

Fermi Golden Rule: $I_{XAS} = |\langle \Phi_{f} | dipole | \Phi_{i} \rangle|^{2} \delta_{[\Delta E=0]}$ $\left| \langle \Phi_{f} | \hat{e}_{q} \cdot r | \Phi_{i} \rangle \right|^{2} = \left| \langle \Phi_{i} \underline{c} \varepsilon | \hat{e}_{q} \cdot r | \Phi_{i} \rangle \right|^{2}$ $= ?? \left| \langle \varepsilon | \hat{e}_{q} \cdot r | c \rangle \right|^{2}$

Single electron (excitation) approximation: $I_{XAS} = |\langle \Phi_{empty} | dipole | | \Phi_{core} \rangle|^2 \rho$

K edge (1s) XAS

Excitation of core electrons to empty states.

Spectrum identifies with the (final state) empty Density of States

Calculate with DFT (LDA+U, TDDFT, BSE)

+ add core hole potential + add U for strongly correlated systems

L edge (2p) XAS

Excitation of core electrons to empty states.

Empty Density of States

+ add core hole potential
+ add U for strongly correlated systems
+ add core hole spin-orbit coupling
+ add core-valence correlations

(a.k.a. multiplet effects)

	Multip	let Effec	cts (Ni²+))
1s	2s	2р	3s	Зр
0.07	5	8	13	17
	Core	e Valence (<mark>Overlap</mark>	
0	0	17	0	2
	Core S	Spin-orbit o	oupling	

Quantum numbers			
• Main	n	1,2,3,	
 Azimuthal 	L	(orbital moment)	
• Spin	S		
Magnetic	m _L	(orbital magnetic moment)	
Spin magnetic	m _s	(spin magnetic moment)	
Total moment	J		
Total magnetic	m _J		

Term Symbols ^{2S+1} L _J					
 Term symbols of a 1s electron 					
• S=1/2, L=0, J=1/2 \rightarrow ² S _{1/2}	[(2S+1)(2L+1)=2]				
• Term symbols of a 2p electron					
• S=1/2, L=1, J=1/2 or J=3/2 \rightarrow	² P _{1/2} or ² P _{3/2}				
	[Σ(2J+1)=2+4=6]				
 Term symbols of a 3d electron 					
• S=1/2, L=2, J=3/2 or J=5/2 \rightarrow	² D _{3/2} or ² D _{5/2}				
	[Σ(2J+1)=4+6=10]				

T	erm Symbols			
p3p-configuration				
Ferm symbols 2p:	$^{2}P_{1/2}$ and $^{2}P_{3/2}$			
erm symbols 3p: ${}^{2}P_{1/2}$ and ${}^{2}P_{3/2}$				
erm symbols 2p3	p: multiply L and S separately			
_{-2p} =1, L _{3p} =1	L _{TOT} = 0, 1 or 2			
S _{2p} =1/2, S _{3p} =1/2	$S_{TOT} = 0 \text{ or } 1$			
Il combinations are possible:				
¹ S, ¹ P, ¹ D and ³ S, ³ P, ³ D				

Term Symbols

2p3p-configuration all combinations are possible: ${}^{1}S,{}^{1}P,{}^{1}D \text{ and } {}^{3}S,{}^{3}P,{}^{3}D$ In short: ${}^{2}P \otimes {}^{2}P = {}^{1,3}S,P,D$ Add J-quantum numbers:

- ${}^{1}S_{0,} {}^{1}P_{1}, {}^{1}D_{2} + {}^{3}S_{1}$ + ${}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$
- $+ {}^{3}D_{1}, {}^{3}D_{2}, {}^{3}D_{3},$

Term Symbols

• Term symbols of a 2p¹3d¹ configuration • 2p¹ \rightarrow 2P_{1/2}, 2P_{3/2} (S=1/2, L=1, J=1/2,3/2) • 3d¹ \rightarrow 2D_{3/2}, 2D_{5/2} (S=1/2, L=2, J=3/2,5/2) • 2p¹3d¹ \rightarrow S_{TOT} = 0 or 1 \rightarrow L_{TOT} = 1 or 2 or 3 \rightarrow 1P₁ + 3P₀, 3P₁, 3P₂ \rightarrow 1D₂ + 3D₁, 3D₂, 3D₃ \rightarrow 1F₃ + 3F₂, 3F₃, 3F₄ [Σ (2J+1)=3+1+3+5+5+3+5+7+7+5+7+9=60]

2p XAS of TiO₂

- Ground state is 3d⁰
- Dipole transition 3d⁰→2p⁵3d¹
- Ground state symmetry: ¹S₀
- Final state symmetry: ²P²D gives
- ¹P, ¹D, ¹F, and ³P, ³D, ³F

	Term Symbols of 2p ²					
		M _S =1	M _S =0	M _S =-1		
	$M_L=2$	0	1	0		
	$M_L = 1$	1	2	1		
	$M_L = 0$	1	3	1		
	M _L =-1	1	2	1		
	M _L =-2	0	1	0		
LS ter LSJ te	LS term symbols: ¹ S, ¹ D, ³ P LSJ term symbols:					
	${}^{1}S_{0} {}^{1}D_{2} {}^{3}P_{0} {}^{3}P_{1} {}^{3}P_{2}$					

2p XAS of TiO₂

- Final state symmetries: ¹P, ¹D, ¹F, and ³P, ³D, ³F
- Transition $<^{1}S_{0}|\Delta J = +1|^{1}P_{1}, ^{3}P_{1}, ^{3}D_{1}>$
- 3 peaks in the spectrum

Hunds rules• Term symbols with maximum spin S are lowest in energy,• Among these terms:Term symbols with maximum L are lowest in energy• In the presence of spin-orbit coupling, the lowest term has• J = |L-S| if the shell is less than half full• J = L+S if the shell is more than half full3d¹ has $^{2}D_{3/2}$ ground state $3d^{2}$ has $^{3}F_{2}$ ground state3d⁹ has $^{2}D_{5/2}$ ground state $3d^{8}$ has $^{3}F_{4}$ ground state

Give the Hund's rule ground states for 3d¹ to 3d⁹

Term Symbols and XAS Ni^{II} ion in NiO: Ground state: 3d⁸ Final state: 2p53d9 p-symmetry Dipole transition: 3d⁸-configuration: ¹S ¹D, ³P, ¹G, ³F j=4 $2p^{5}3d^{9}$ -configuration: $^{2}P\otimes^{2}D = ^{1,3}PDF$ j'=0,1,2,3,4 p-transition: 1**P** ∆j=+1,0,-1 ³F₄ ground state symmetry: ³F ${}^{3}F \otimes {}^{1}P = {}^{3}DFG$ transition: two possible final states: ³D, ³F ³D₃, ³F₃, ³F₄, ¹F₃

Term Sy	mbols and X	AS
Fe atom: Ground state: Final state: Dipole transition:	3d ⁶ (4s ²) 2p ⁵ 3d ⁷ p-symmetry	
3d ⁶ -configuration: 2p ⁵ 3d ⁷ -configuration: p-transition:	⁵ D, etc. 110 states ¹ P	j=4 j'= 3,4, 5 ∆j=+1,0,-1
ground state symmetry transition: possible final states:	y: ⁵ D ⁵ D ⊗ ¹ P = ⁵ PDF	⁵ D ₄ 68 states

Crystal Field Effects				
SO ₃			O _h (Mulliken)	
S	0		A ₁	
Ρ	1		T ₁	
D	2		E+T ₂	
F	3		$A_2 + T_1 + T_2$	
G	4		$A_1 + E + T_1 + T_2$	

2p XAS of TiO ₂ (atomic multiplets)					
Ti ^{IV} ion in TiO ₂ : 3d ⁰ -configuration: 2p ¹ 3d ⁹ -configuration: p-transition:	¹ S, ² P⊗ ² D = ^{1,3} PDF ¹ P	j=0 j'=0,1,2,3,4 ∆j=+1,0,-1			
Write out all term sym	nbols:				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	³ F ₄ 1				

J in SO ₃	Deg.	
0	1	
1	3	
2	4	
3	3	
4	1	
Σ	12	
	<¹S ₀ dip	$ P_1 = 0$ ble $ P_1 = 0$ b

Crystal Field Effect on XAS			
J in SO ₃	Deg.	Branchings	
0	1	A ₁	
1	3	3×T	
2	4	4×E, 4×T ₂	
3	3	3×A ₂ , 3×T ₁ ,3×T ₂	
4	1	A_1, E_1, T_2	
Σ	12		
	<1S ₀ dip	$ ^{1}P_{1}\rangle$ goes to $$	T ₁ T ₁ >

Crystal Field Effect on XAS					
J in SO ₃	Deg.	Branchings	Γ in O_h	Deg.	
0	1	A ₁	A ₁	2	
1	3	3×T	A ₂	3	
2	4	$4 \times E, 4 \times T_2$	T ₁	7	
3	3	3×A _{2,} 3×T _{1,} 3×T ₂	T ₂	8	
4	1	A ₁ , E _{1,} T ₂	E	5	
Σ	12			25	
	<¹S ₀ dip	oole ¹ P ₁ > goes to <a< td=""><td>₁ T₁ T₁></td><td></td></a<>	₁ T ₁ T ₁ >		

Crystal Field Effects on 3d ⁸ states					
Energy	Symmetries O _h	Total symmetry			
4.6 eV	¹ A ₁				
0.2 eV	³ T ₁				
-0.1 eV	${}^{1}E + {}^{1}T_{2}$				
-1.8 eV	${}^{3}A_{2} + {}^{3}T_{1} + {}^{3}T_{2}$				
0.8 eV	${}^{1}A_{1} + {}^{1}T_{1} + {}^{1}T_{2} + {}^{1}E$				
	Energy 4.6 eV 0.2 eV -0.1 eV -1.8 eV 0.8 eV	Crystal Field EffectsEnergySymmetries O_h 4.6 1A_1 eV 3T_1 eV $^1E + {}^1T_2$ -0.1 $^1E + {}^1T_2$ eV $^3A_2 + {}^3T_1 + {}^3T_2$ eV $^1A_1 + {}^1T_1 + {}^1T_2 + {}^1E$			

Crystal Field Effects			
SO ₃		O _h (Butler)	O _h (Mulliken)
S	0	0	A ₁
Р	1	1	T ₁
D	2	2 + ^1	E+T ₂
F	3	^0+ 1 + ^1	$A_2 + T_1 + T_2$
G	4	0 + 1 + 2 + ^1	$A_1 + E + T_1 + T_2$

	Cryst	al Field Effect	s on 3d ⁸ states
	Energy	Symmetries O _h	Total symmetry
¹ S	4.6 eV	¹ A ₁	$A_1 \otimes A_1 = A_1$
ЗР	0.2 eV	³ T ₁	
¹ D	-0.1 eV	${}^{1}E + {}^{1}T_{2}$	
з <mark>F</mark>	-1.8 eV	${}^{3}A_{2} + {}^{3}T_{1} + {}^{3}T_{2}$	$T_1 \otimes T_2 = T_1 + T_2 + E + A_2$
¹ G	0.8 eV	$^{1}A_{1} + {}^{1}T_{1} + {}^{1}T_{2} + {}^{1}E$	
			5

The multiplication table of O _h symmetry					
0	A ₁	A ₂	T ₁	T ₂	Е
A ₁	A ₁	A ₂	T ₁	T ₂	E
A ₂	A ₂	A ₁	T ₂	T ₁	E
T ₁	T ₁	T ₂	$\begin{array}{c} \mathbf{T_1} + \mathbf{T_2} \\ + \mathbf{E} + \mathbf{A_1} \end{array}$	$\begin{array}{c} \mathbf{T_1} + \mathbf{T_2} \\ \mathbf{+E} + \mathbf{A_2} \end{array}$	T ₁ +T ₂
T ₂	T ₂	T ₁	$\begin{array}{c} \mathbf{T_1} + \mathbf{T_2} \\ + \mathbf{E} + \mathbf{A_2} \end{array}$	$\begin{array}{c} \mathbf{T}_1 + \mathbf{T}_2 \\ \mathbf{+E} + \mathbf{A}_1 \end{array}$	T ₁ +T ₂
E	E	E	T ₁ +T ₂	T ₁ +T ₂	A ₁ +A ₂ + E

	Cryst	al Field Effect	s on 3d ⁸ states
	Energy	Symmetries O _h	Total symmetry
¹ S	4.6 eV	¹ A ₁	^{A1} A ₁ =A ₁
зр	0.2 eV	³ T ₁	
¹ D	-0.1 eV	${}^{1}E + {}^{1}T_{2}$	
зF	-1.8 eV	${}^{3}\mathbf{A_{2}} + {}^{3}\mathbf{T_{1}} + {}^{3}\mathbf{T_{2}}$	$(T_2)+(A_1+E_1+T_1+T_2)+(A_2+E+T_1+T_2)$
¹ G	0.8 eV	${}^{1}A_{1} + {}^{1}T_{1} + {}^{1}T_{2} + {}^{1}E$	

Conf.	SO3	Oh	Spin in Oh	Deg.	Overall Symmetry in Oh
3d ^o	¹ S ₀	¹ A ₁	A ₁	1	A ₁
3d1	² D _{3/2}	² T ₂	U ₁	2	U ₂ + G
3d ²	³ F ₂	³ T ₁	T ₁	4	$E + T_1 + T_2 + A_1$
3d ³	⁴ F _{3/2}	4A2	G	1	G
3d4	⁵D₀	5E 3T₁	$E + T_2$ T_1	5 4	$A_1 + A_2 + E + T_1 + T_2$ E+T_1 + T_2 + A_1
3d⁵	⁶ S _{5/2}	⁶ A ₁ 2T ₂	G+U ₂ U ₁	2 2	G+U ₂ G+U ₂
3d ⁶	⁵ D ₂	⁵ T ₂ 1A ₁	E+T ₂ A ₁	6 1	$A_1 + E + T_1 + T_1 + T_2 + T_2$ A_1
3d7	4F _{9/2}		G U1	4 1	U_1+U_2+G+G
3d ⁸	³ F ₄	³ A ₂	T ₁	1	T ₂
3d9	² D _{5/2}	² E	U ₁	1	G

1s2p and 1s3p XES spectra			
Approximations:			
- 3d ^N ground state (+ CT)			
- XES only from lowest energy 1s ¹ 3d ^N state (+CT)			
- Charge transfer energy is Δ -Q			
- Neglect 1s3d exchange interaction (needed for spin-pol.)			
- Neglect of excitation process (a better approximation is to			
describe the excitation process with XPS)			

