Electronic Structure of Cobalt Nanocrystals Suspended in Liquid

Hongjian Liu, Jinghua Guo, Yadiog Yin, Andreas Augustsson, Chungli Dong, Joseph Nordgren, Chinglin Chang, Paul Alivisatos, Geoff Thornton, D. Frank Ogletree, Felix G. Requejo, Frank de Groot, and Miquel Salmeron

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Physics, Uppsala University, Box 530, 751 21 Uppsala, Sweden, Department of Physics, Tamkang University, Tamsui, Taiwan 251, R.O.C., Department of Chemistry, University of California, Berkeley, California 94720, London Centre for Nanotechnology, Chemistry Department, University College London WC1H 0AJ, United Kingdom, Departamento de Fisica, FCE, UNLP-INIFTA (CONICET), Argentina, Department of Chemistry, Utrecht University, The Netherlands

Received March 13, 2007; Revised Manuscript Received May 24, 2007

ABSTRACT

The electronic structure of cobalt nanocrystals suspended in liquid as a function of size has been investigated using in situ X-ray absorption and emission spectroscopy. A sharp absorption peak associated with the ligand molecules is found that increases in intensity upon reducing the nanocrystal size. X-ray Raman features due to d−d and to charge-transfer excitations of ligand molecules are identified. The study reveals the local symmetry of the surface of ε-Co phase nanocrystals, which originates from a dynamic interaction between Co nanocrystals and surfactant + solvent molecules.

Advances in the synthesis of particles of nanometer dimensions, narrow size distribution, and controlled shape have generated interest because of the potential to create novel materials with tailored physical and chemical properties. New properties arise from quantum confinement effects and from the increasing fraction of surface atoms with unique bonding and geometrical configurations. Co nanocrystals display a wealth of size-dependent structural, magnetic, electronic, and catalytic properties. The challenges in making isolated Co nanocrystals are to overcome the large attractive forces between the nanoparticles, due to surface tension and van der Waals interactions that tend to aggregate them.

Using appropriate surfactants, however, Co nanocrystals could be grown with controlled shapes and sizes: either spheres or disks in a surfactant mixture. It was found that disks of hcp-Co are obtained in a binary surfactant mixture at early times after injection of the precursor and spontaneously transform to the more thermodynamically stable spheres of ε-Co after heating for a sufficient period of time.

A fundamental understanding of the growth and properties of the nanocrystals would greatly benefit from a detailed information of their electronic structure as a function of size and of the presence and nature of the molecules bound to their surface. Because the Co nanocrystals are extremely reactive and oxidize easily, it is important to use techniques that can interrogate the particles in their growth environment so that their electronic and chemical structure can be followed during growth and during catalytic reactions.

We report an electronic structure study of Co nanocrystals with a narrow size distribution suspended in 1,2-dichlorobenzene (C6H4Cl2) using in situ photon-in/photon-out spectroscopies, including X-ray absorption (XAS), X-ray emission (XES), and resonant inelastic X-ray scattering (RIXS). These techniques are element selective as they
involve core atomic levels and thus can probe the local electronic structure of selected species in a complex system.\(^{10-12}\) We found particle size effects arising from interactions with surfactant and solvent molecules at the particle surface.

Cobalt nanocrystals were synthesized by decomposing the carbonyl precursor, \(\text{Co}_2(\text{CO})_8\), in 1,2-dichlorobenzene at a temperature around its boiling point (~182 °C).\(^3-5\) Oleic acid, \(\text{CH}_3(\text{CH}_2)_7\text{CH}==\text{CH}(\text{CH}_2)_7\text{CO}_2\text{H}\), and trioctylphosphine oxide, \((\text{CH}_3(\text{CH}_2)_3)_3\text{P}=\text{O}\) (TOPO), were used to control the growth and to provide a protective surfactant capping. In a volume of 18 mL solution, the amount of TOPO was 0.1 g. The size of Co nanocrystals depends mainly on the amount of oleic acid, while TOPO has a much weaker interaction with the cobalt surface. Monodispersed Co nanocrystals with sizes of 3, 4, 5, 6, and 9 nm (±0.65 nm) were prepared by simply adjusting the amount of oleic acid used in the synthesis. The size of the nanocrystals was determined by transmission electron microscopy (TEM). Samples of liquid suspensions were encapsulated in a small cell inside a glove box under argon gas before transfer to beamline 7.0 of the Advanced Light Source for X-ray spectroscopic experiments.\(^{13}\) The cell was sealed with a silicon nitride window 100 nm thick.\(^{14}\) Incident and emitted X-ray photons penetrated through this window. The X-ray absorption spectra were recorded in total fluorescence yield mode using a channeltron. X-ray emission spectra were obtained using a high-resolution grazing-incidence grating spectrometer. The energy resolution was 0.2 eV for XAS and 0.7 eV for XES measurements.

The Co L-edge XAS of nanocrystals are shown in Figure 1, along with Co metal, \(\text{CoCl}_2\), \(\text{Co}_3\text{O}_4\), and CoO reference spectra. The spectra contain two regions separated by 16.0 eV due to the core-level spin orbital splitting of the 2p\(_{3/2}\) and 2p\(_{1/2}\) orbitals. The high branching ratio of 16.0 eV due to the core-level spin orbital splitting of the spectra. The spectra contain two regions separated by 100 eV centered at the Co L-edge (780 eV), O K-edge (795 eV), and Cl L-edge (805 eV). Thus, the fluorescence yield of this peak must be due to photons with energy below 120 eV, which are detected by the channeltron but not the spectrometer. As we discuss next, we believe that this peak is due to a metal-to-ligand charge transfer (MLCT) to unoccupied ligand orbitals involved in \(\pi\) back-bonding to the Co metal.

We investigated the origin of the A2 peak using the X-ray emission spectrometer to measure XAS spectra in partial fluorescence-detection mode. No emission changes associated with this peak were observed within a window of 50–100 eV centered at the Co L-edge (780 eV), O K-edge (525 eV), C K-edge (275 eV), or Cl L-edge (170 eV). Thus the fluorescence yield of this peak must be due to photons with energy below 120 eV, which are detected by the channeltron but not the spectrometer. As we discuss next, we believe that this peak is due to a metal-to-ligand charge transfer (MLCT) to unoccupied ligand orbitals involved in \(\pi\) back-bonding to the Co metal.
XAS. The intensity has been normalized to the incoming photon flux. The spectra comprise three contributions: normal X-ray emission, elastic, and inelastic X-ray scattering. Normal X-ray emission is dominant at excitation well above the Co L-edge absorption threshold. The normal emission appears at constant photon energy, 778 eV for the L3 edge (indicated by dash line), and independent of changes in the excitation energy. The X-ray scattering contribution includes an elastic peak at the same energy as the incident photons and inelastic peaks at lower energies that are regarded as X-ray Raman scattering. Strong resonance effects are observed in the scattering intensity as incident energy changes from a to f. The same data are plotted on an energy-loss scale (Figure 2b). The elastic peak (at the origin) corresponds to the final state of X-ray scattering process equal to the ground state, while the loss peaks correspond to final excited states near the ground state. The peak at ~2 eV is attributed to transitions where the final configuration contains quartet—quartet and quartet—doublet d—d excitations of the crystal field split d-levels. The relative intensity of the peak shows a notable resonance effect with incident energy. Another set of Raman peaks occurs at ~6.7 eV, which corresponds to the ligand O 2p—Co 3d charge-transfer excitations.

To understand these spectroscopic observations, the single-impurity Anderson model with full multiplet effects has been applied. The calculations were performed in the so-called charge-transfer ligand field multiplet theory developed by Thole, following Cowan and Butler.23–25 This approach takes into account all the electronic interactions and the spin—orbit coupling on any shell and treats the geometrical environment of the absorbing atom through crystal field potential.7 In the simplest formulation, a pure 3d⁰ configuration is attributed to the ground state of the 3d transition ion. One then calculates the transitions between the 2p⁰3d⁰ ground state toward the 2p³3d⁴+1 excited states. Charge-transfer effects are included by adding additional configurations, for example adding 3d⁰ + 3d⁰L to describe ligand-to-metal charge transfer, 3d⁰ + 3d⁰L to describe metal-to-ligand charge transfer, or a combination of both channels.

Figure 2. (a) Resonant X-ray emission spectra recorded at selected excitation energies (marked by arrows in the XAS at the top) of the Co 2p threshold for cobalt nanocrystals with a diameter of 6 nm. (b) Resonant inelastic X-ray scattering spectra on an energy-loss (Raman) scale.

In Co metal, the ground state is 4s²3d⁷,26 while for CoO, one uses the ground state configuration [3d⁷ + 3d²L⁻¹] (L⁻¹ denotes a hole in the ligand level). Although this explained the CoO spectrum quite well,22 the [3d⁷ + 3d²L⁻¹] never yielded a significant satellite contribution, as seen in Co nanocrystals (in Figure 1). The only known octahedral systems with large satellites are cyanide complexes, where large satellites are caused by π back-bonding, i.e., [3d⁷ + 3d²L].

Figure 3 shows the simulations including metal-to-ligand charge transfer (MLCT) effects. The calculations describe the ground state as [3d⁷ + 3d²L] with the MLCT energy Δₓ of ~3.0 eV. This yields a ground state that has 38% 3d⁷ and 62% 3d⁷L, where it is noticed that the main L3 edge still looks similar to that of the 3d⁷ ground state found in CoO. The main structure is then a [2p³3d⁷ + 2p³3d²L] bonding combination and the satellite is the antibonding part. It is worth noticing that the MLCT acts mainly on the t₂g electrons. The optimal simulation of the spectral shape was obtained if mainly the Co 3dₓᵧ-orbital was mixed with ligand orbitals in D₄hf symmetry. We use tₓᵧ = 3.0 eV and tₓᵧLₓᵧ = 1.0 eV. Assuming a Co surface ion bonded to a ligand in the z-direction, the xy-orbital (with B₃ symmetry) is the orbital that can donate its electrons to empty π-states. This implies that the surface Co atoms in nanocrystals are aligned in an ordered fashion to connect the ligands perpendicularly to the nanocrystal surface, which gives an explanation of why no stacking faults caused by the sliding atomic planes were observed in c-Co nanocrystals in contrast to hcp-Co. Also, the surface Co atoms interact less with the ligands in the larger Co nanocrystals, as indicated by the reduced intensity of X-ray absorption satellites.

Figure 3. Calculated Co L-edge absorption spectrum from the single-impurity Anderson model. The multiplets have been broadened with the experimental resolution function. The insert shows the chemicals involved in the synthesis of Co nanocrystals from dicobalt carbonyl (Co₂(CO)₈). It also illustrates a charge transfer from Co nanocrystals to ligand molecules.
The CT peak in the 9 nm Co nanocrystals at 6.7 eV, that is, close to CoO, could be the result of penetration of chlorobenzene molecules through the surfactant shell in the smaller nanocrystals due to less efficient packing. For the smaller Co nanocrystals, the interaction is dominated by the oleic acid surfactant.

The increase of intensity with nanocrystal size is in line with the decreasing fraction of surface Co atoms.

The intensity of the charge-transfer peak at -6 to -7 eV increases with nanocrystal size from 3 to 6 nm and decreases thereafter. Interestingly, there is also a peak shift from the 9 nm to the 6 nm nanocrystals. The shift can be accurately determined by deconvolution of the spectra using four Voigt functions corresponding to elastic, d-d loss peaks, and MLCT peaks, as shown in Figure 4b. The total fit is excellent and indistinguishable from the experimental data within the noise level. The charge-transfer peak was found to be at -7.3 eV for the 9 nm Co nanocrystals and at -6.7 eV for 6 nm and smaller ones. The reference spectra of CoO and CoCl$_2$ in Figure 4b provide a clue as to the cause of the shift. The CT peak in the 9 nm Co nanocrystals at -7.3 eV is similar to that of CoO, indicating a strong interaction between Co nanocrystals and the carboxyl group of the oleic acid surfactant. For the smaller Co nanocrystals (3–6 nm), the CT peak is found at -6.7 eV, that is, close to CoCl$_2$, which could be the result of penetration of chlorobenzene molecules through the surfactant shell in the smaller nanocrystals due to less efficient packing. The width of CT peaks in the Co nanocrystals is also narrower than that of the CoO and close to that of CoCl$_2$, supporting again that the Co nanocrystals interact with the surrounding C$_6$H$_4$Cl$_2$ solvent molecules.

In conclusion, we have performed XAS, XES, and RIXS studies of Co nanocrystals. The experimental and theoretical spectra show that the interaction between Co nanocrystals and surfactant and solvent molecules can be measured by in situ techniques, opening the way for in situ studies of growth and reactivity. Our results suggest that the nanocrystals interact more strongly with solvent molecules in the initial stages of growth, while at a later stage, the interaction is dominated by the oleic acid surfactant.

Acknowledgment. Work was supported by the Office of Basic Energy Science, Chemical Sciences Division of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

References

