

introduction to SAXS for polymers -a user view-

Luigi Balzano DSM Ahead/Material Science Center Geleen, The Netherlands

luigi.balzano@dsm.com

Synchrotron and Neutron Workshop (SyNeW) 2015 Utrecht, June 1-2 2015

HEALTH • NUTRITION • MATERIALS

outline

✓ basics of X-rays

what are X-rays and how they work

- generation of X-rays
- interference of waves / Bragg's law
- the SAXS machinery
- morphological information from SAXS data interpretation
 - structure and form factor
 - polydispersity, lattice disorder
- ✓ what is in for you? examples
- ✓ summary

generation of X-rays

lab sources, synchrotron and nebulas

history

Wilhelm C. Röntgen 1845-1923 Nobel Prize in Physics (1901)

Hand mit Ringen (Hand with Rings): first "medical" X-ray (of Ms Röntgen)

commercial applications

material science

sampledetector

handling

BRIGHT SCIENCE. BRIGHTER LIVING.

synchrotron sources

brightest source of X-rays...

typical experimental setup (WAXD)

- non-destructive
- no sample preparation
- time resolved (30 frames/s)
- space resolved (beam spot size limiting, 50nm)
- statistically sound information
- combination with other techniques possible

interference of waves

why do we use X-rays? how are patterns formed? basic interpretation: Bragg's law

X-ray patterns: interference of electromagnetic waves

 X-rays scattering/diffraction patterns are the result of the <u>interference</u> between the incoming X-ray photons and the grating formed by the scatterers in the system (lattice)

- for positive interference, the wavelength should be of the order of the size/distance between scatterers
- crystals and molecules often have characteristic sizes ~ 10-1000 Å, just about the X-rays wavelength (\rightarrow they are suitable for investigation with X-rays)

interference of waves

waves are scattered in phase when the path length difference is an integer number of wavelengths

n λ= d sinθ

 θ is the angle where constructive interference takes place

examples

http://demonstrations.wolfram.com/FraunhoferDiffractionUsingAFastFourierTransform/

FraunhoferDiffractionUsingAFastFourierTransform-author.nb

http://demonstrations.wolfram.com/MultipleSlitDiffractionPattern/

MultipleSlitDiffractionPattern-author.nb

Bragg's law

example of X-ray wave interference

W.H. Bragg 1862-1942

Nobel Prize in Physics (1915)

when a sample is irradiated with X-rays: waves are scattered in phase (*constructive interference*) when the path length difference is an integer number of wavelengths

path length difference = n·wavelength

$$2 \cdot d\sin\theta = n \cdot \lambda$$

BRIGHTER LIVING.

application of Bragg's law length scales in SAXS and WAXD

 $2 \cdot d\sin\theta = n \cdot \lambda$

typical length scales: d =

$$d = \frac{\lambda}{2\sin\theta}$$

 \bullet small angles (SAXS) \rightarrow large d

• wide angles (WAXD)
$$\rightarrow$$
 small d

SAXS
$$d = \frac{0.1nm}{2\sin(0.1/2)} \cong 60\,nm$$

WAXD

$$d = \frac{0.1nm}{2\sin(9/2)} \cong 0.60\,nm$$

length scales morphology of semi-crystalline polymers

detailed information on the morphology of semicrystalline polymers can be obtained with X-rays

morphological information from SAXS

modeling with form and structure factors

the SAXS signal

• scattering is caused by etherogeneties in the electron density I(q)

$$I(q) = \Delta \rho^2 \cdot (...)$$

• 2D scattered intensity is the Fourier transform of the electron density correlation function in real space

the SAXS signal

measured intensity

 $I(q) \qquad I(q) = \Delta \rho^2 \cdot (...)$

Stribeck N - X-ray scattering of Soft Matter Schultz JM – Diffraction for Material Scientists Glatter O and Kratky O – Small Angle X-ray Scattering Balta-Calleja FJ and Vonk CG-X-ray scattering of synthetic polymers and more...

thanks B. Lotz

system with identical particles:

$$I(q) = n\Delta\rho^2 V^2 P(q)S(q)$$

- n number of scatterers
- Δρ density difference (contrast)
- V particle volume
- P(q) form factor (often $|F|^2$)
- S(q) structure factor

P(q=0)=S(q=0)=1

Guinier A and Fournet G – Small Angle Scattering of X-rays Pedersen JS – Adv Colloid Interface Sci 70 (1997), 171 Förster S et al – J Phys Chem B 2005, 109, 1347

R

Х

10

qR

15

d

0

 10^{0}

୍ଡି 10⁻² ଧ

 10^{-4}

10⁻⁶

0

5

CE. BRIGHTER LIVING.

- many form factors available in literature -

modelling, how?

homogeneous spheres with polydisperse radius

$$\langle P(\overline{x},q) \rangle = \int_0^\infty P(x,q)h(x)dx$$
 $h(x)$ distribution
function

polydispersity can be introduced by averaging the form factor over the size distribution

spheres with Gaussian distribution of radii

for certain h(x), several <P(R,q)> have analytical expressions, see: Pedersen JS – Adv Colloid Interface Sci 70 (1997), 171 Förster S et al – J Phys Chem B 2005, 109, 1347

homogeneous spheres with polydisperse radius

$$\langle P(\overline{x},q) \rangle = \int_0^\infty P(x,q)h(x)dx$$
 $h(x)$ distribution
function

polydispersity can be introduced by averaging the form factor over the size distribution

spheres with Gaussian distribution of radii

structure factor for *disordered* systems

S(q) = 1 dilute system with randomly distributed particles

$$I(q) = n\Delta\rho^2 V^2 P(q)S(q)$$

$$\downarrow$$

$$\frac{I(q)}{r\Delta\rho^2 V^2} = P(q)$$

 $n\Delta \rho^2 V^2$

the intensity scattered by a dilute system with randomly distributed particles represents the form factor of the scatterers

asymptotes (Guinier, Porod) recovered in the low and high q limits

structure factor for *ordered* systems

Förster S et al – J Phys Chem B 2005, 109, 1347

example: structure factor of an hexagonal lattice

Förster S et al – J Phys Chem B 2005, 109, 1347

what is in it for you?

examples:

- growth of shish-kebabs
- phase separation of (dissolution type) nucleating agents
- crazing during cyclic loading
- spatial heterogeneity in injection molded parts

modeling growth of shish-kebabs

Hobbs, J.K. et al. Macromolecules 2001

- material: iPP
- isothermal at 165 °C
- shear time 0.188 s
- wall stress~ 0.16 MPa
- wall shear rate~ 750 s⁻¹

Balzano L et al PRL **2008** Balzano L et al Macromolecules **2011**

modeling growth of shish-kebabs

Hobbs, J.K. et al. Macromolecules 2001

all identical particles (monodisperse system)

$$I(\vec{s}) = F^{2}(\vec{s}) \cdot Z(\vec{s}) \qquad \vec{s} = \{s_{1}, s_{2}, s_{3}\}$$

form factor (sharp interfaces)

$$F(s_{12}, s_3) = \frac{\pi D^2}{4} \frac{2J_1(\pi D s_{12})}{\pi D s_{12}} \frac{\sin(\pi T s_3)}{\pi T s_3}$$

structure factor (perfect orientation)

$$Z(s_3) = \operatorname{Re}\left[\frac{1 + H_L(s_3)}{1 - H_L(s_3)}\right]$$

modeling growth of shish-kebabs

Hobbs, J.K. et al. Macromolecules 2001

$$I(\vec{s}) = \langle F^{2}(\vec{s}) \rangle + \langle F(\vec{s}) \rangle^{2} \left[Z(\vec{s}) - 1 \right]$$

polydisperse system

spatially averaged form and structure factors (can be complicated formulas but they are) available in literature !!!

J. K. Keum et al. Progress in Colloid and Polymer Science, vol. 130, pp. 114-126, 2005.

 \Rightarrow detailed kinetic information \rightarrow hint for the formation mechanism (

crazing during cyclic loading

← ____ →

Poly(ethylene therephtalate), PET

H.Kausch et al. – J. Macromol. Sci. Part B,38, 1999, 803 R.Bubeck, D.Buckley, E.Kramer, H.Brown – Journal of Materials Science 26, 1991, 6249

crazing during cyclic loading

RIGHT SCIENCE, BRIGHTER LIVING.

H.Kausch et al. – J. Macromol. Sci. Part B,38, 1999, 803 R.Bubeck, D.Buckley, E.Kramer, H.Brown – Journal of Materials Science 26, 1991, 6249

phase separation of (dissolution type) nucleating agents

total scattered intensity (invariant)

 $Q = 2\pi^2 \cdot x(1-x)\Delta\rho^2$

DMDBS phase separates \rightarrow invariant increases due to the e⁻ density difference

Balzano et al. - Macromolecules 2008, 41, 399-408

phase separation of (dissolution type) nucleating agents

iPP+1% DMDBS

Balzano et al. - Macromolecules 2008, 41, 399-408

spatial heterogeneity in injection molded parts

isotactic polypropylene, iPP

cooling rate vs stress as function of the position

take away

SAXS is a relatively simple technique that can be used to extract morphological information in static and dynamic conditions

the SAXS signal comes from e⁻ density differences and can be seen as the Fourier transform of the real-space morphology

SAXS data can be modeled in terms of form and structure factors (also in other ways...)

- mathematical complexity should not scare you! Very many form and structure factors are tabled in literature
- modeling provides qualitative and quantitative information on size, size distribution and morphology of scatterers
- results are model dependent
- model assumptions need to be validated by other techniques

BRIGHT SCIENCE. BRIGHTER LIVING.™