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Experimental Phasing of SFX Data

Thomas Barends
MPI for Medical Research, Heidelberg

Conclusions
X-ray Free-Electron Lasers are pushing back the 
boundaries of possibility in biological 
crystallography:

-Data collection from (sub)micrometer sized 
crystals
-Outrunning radiation damage (See Kern et al., 
Suga et al., Hirata et al.)
-Allowing subpicosecond time resolution 
diffraction experiments
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LYSOZYME DATA FROM CXI FEBRUARI 2011 – 1.9 Å resolution

Boutet et al. (2012), Science:
High-resolution protein structure determination by 
serial femtosecond crystallography

LYSOZYME DATA FROM CXI FEBRUARI 2011 – 1.9 Å resolution

Boutet et al. (2012), Science:
High-resolution protein structure determination by 
serial femtosecond crystallography

PHASED BY MOLECULAR 
REPLACEMENT
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“Smoothened” GPCR complexed with cyclopamine
Structure determination of membrane proteins from less than 0.5 mg of 
protein!

Weierstall et al, Nature Communications 5, Article number: 3309 
doi:10.1038/ncomms4309

“Smoothened” GPCR complexed with cyclopamine
Structure determination of membrane proteins from less than 0.5 mg of 
protein!

Weierstall et al, Nature Communications 5, Article number: 3309 
doi:10.1038/ncomms4309

PHASED BY MOLECULAR 
REPLACEMENT
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Liu et al., Serial Femtosecond Crystallography of G Protein-
Coupled Receptors
Science 20 December 2013: 
Vol. 342 no. 6165 pp. 1521-1524DOI:10.1126/science.1244142

Red: XFEL
Green: 
synchrotron

Liu et al., Serial Femtosecond Crystallography of G Protein-
Coupled Receptors
Science 20 December 2013: 
Vol. 342 no. 6165 pp. 1521-1524DOI:10.1126/science.1244142

Red: XFEL
Green: 
synchrotron

PHASED BY MOLECULAR 
REPLACEMENT
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Phase determination for new 
structures?

Introduce a heavy atom and measure 
-the differences between I(hkl) and I(-h-k-l) 
(SAD)
-I(hkl) and I(-h-k-l) at different wavelengths
( MAD)
-the differences between I(heavy atom) and 
I(no heavy atom)
(SIR(AS), MIR(AS))
-or introduce small changes by radiation 
damage (RIP(AS))

All of this relies on being able to accurately measure small 
differences between large values – requires a far greater accuracy 
than what is needed for your average difference Fourier map!
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Indexing and integrating reflections: rotation/oscillation method

Rotation method
-rotate xtal over finite range
-calculate orientation matrix
from observed spot positions
Can fully integrate whole 
reflections!

Accurate determination
of profile  accurate I
and σ(I)
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Serial femtosecond crystallography 
- Each crystal is immediately destroyed
- Numerous shots of different crystals with    

possibly different sizes 
- No a priori control over orientation
- Crystals effectively stand still during a 300 fs pulse
-Only part of reflection intersects Ewald sphere   

(“partials”, no “fullies”)
-Fringes rather than neat spots

- Crystals may be hit by center of the beam, or just be 
grazed by it
-Beam intensity and spectrum varies from shot to shot

6x6x6                                         200x200x200
unit cells                                     unit cells

(Simulation software by Wolfgang Kabsch)

1st observation of a certain I(hkl) 
Large crystal, hit full-on by the center of the direct beam
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2nd observation of same I(hkl)
Much smaller crystal

3rd observation
Bigger crystal than the last one…
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It is possible to do a Monte Carlo integration 
over multiple indexed femtosecond images and 
obtain a dataset of fully integrated reflections

Kirian et al (2010), Optics Express,18, 5713-5723:

<I[hkl]>=ΣIn/n

…how good 
are these I? What 
are their sigma’s?

I

n

Projections of two images of the same macroscopic crystal 
taken shortly after each other 

Shot-to-shot beam differences

LCLS spectra
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Test case for de novo phasing
• We want a really, really strong signal

• Idea: use a really good heavy atom 
derivative of something that scatters really, 
really well: Lysozyme:Gd

Girard et al., Acta Cryst. D58, 1-9

Anomalous differences from Gd

Can we get a strong enough anomalous signal from this to 
-find the heavy atom positions?
-get the phases for the protein?

At 2.0 A
20% contribution
to F’s!
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LCLS SFX data Rotating anode data

Data collection

Space group P43212 P43212

Cell dimensions a

a, b, c (Å) 79, 79, 39 78.1, 78.1, 39.2

a, b, g (º) 90, 90, 90 90, 90, 90

Wavelength (Å) 1.45 1.5418

Pulse energy/fluence at sample 60 μJ/ 8.1023 photons/s
b

107 photons/s

Dose (MGy) 22 MGy/crystal 1 kGy/dataset

Number of collected diffraction patterns 2,402,199 360 (high-res run)
140 (low-res run)

Number of crystal hits 191,060 500

Number of indexed images patterns 59,667 500

Resolution (Å) c 40-2.1 (2.14-2.10) 40-1.8 (1.83-1.8)

0.061 (0.179) n.a.

Rmerge n.a.d 0.030 (0.068)

CC* 1.0 (0.99) 1.0 (0.99)

CC1/2 0.99 (0.96) 1.0 (0.95)

CCano 0.48 0.92

I/sI 11.9 (4.7) 39.7(7.3)

Completeness (%) 100 (100) 96.6 (93.9)

SFX multiplicity of observationse 1383.5 (1310.0) n.a.

Redundancye n.a. 16.1 (11.7)

Refinement

Resolution (Å) 40-2.1

No. reflections 7287

Rwork/ Rfree 0.230/0.259

No. atoms

Protein 992

Ligand/ion 58 (2 gadoteridol)

Water 70

B-factors

Protein 29.9

Ligand/ion 39.5

Water 43.7

R.m.s deviations

Bond lengths (Å) 0.008

Bond angles (º) 1.17
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Experimental phasing (SAD on lysozyme:gadolinium)
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Experimental phasing (SAD on lysozyme:gadolinium)

w=1/4 section of 
anomalous difference 
Patterson using 60,000 
images

No. Images    Peak height
7,500 3.1

15,000 4.0
30,000 5.7
60,000 6.7
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Experimental phasing (SAD on lysozyme:gadolinium)

First demonstration of de novo phasing from FEL data
60,000 images needed

Perhaps I was a bit strict by insisting on automatic building though...

Detectors, software etc. all still under development, so this will all become 
easier in the forseeable future

Data quality
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I didn’t think of this – a referee kindly pointed this out – thank you!

Rsplit is very similar to Rmerged-I :
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Which in turn is closely related to Rpim : (an analytical form of Rmerged-I)

Diederichs, K. & Karplus, P. A. Nat. Struct. Biol. 4, 269–275 (1997)
Weiss, M. S. J. Appl. Cryst. 34, 130-135 (2001)
Weiss, M. S., Sicker, T. & Hilgenfeld, R. Structure 9, 771-777, (2001)
Panjikar, S. & Tucker, P. A. J. Appl. Cryst. 35, 261-266, (2002)
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SAD: Prediction of solvability
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-good indicator of noise                                              -contains signal as well              
as noise

Diederichs, K. & Karplus, P. A. Nat. Struct. Biol. 4, 269–275 (1997)
Weiss, M. S. J. Appl. Cryst. 34, 130-135 (2001)
Weiss, M. S., Sicker, T. & Hilgenfeld, R. Structure 9, 771-777, (2001)
Panjikar, S. & Tucker, P. A. J. Appl. Cryst. 35, 261-266, (2002)

When Rano exceeds Rpim, substructure solutions start to appear in trials
At higher Rano/Rpim ratios, phasing becomes possible

Tip from referee: does Rano/Rsplit have such a predictive value, too?

Predictive value of Rano/Rsplit?

Rano/Rsplit

7.5k    15k    30k   60k     

No. images

1.1
1.2

1.4

1.8
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Predictive value of Rano/Rsplit?

Rano/Rsplit

7.5k    15k    30k   60k     

No. images

1.1
1.2

1.4

1.8

Substructure
can be solved

Predictive value of Rano/Rsplit?

Rano/Rsplit

7.5k    15k    30k   60k     

No. images

1.1
1.2

1.4

1.8

Interpretable
map
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Is a high Rsplit so bad? 
Many SFX structures have high Rsplit...
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Difference Density maps are amazing – you can get away with very low 
precision and still see real things!

See the paper by Henderson and Moffat (1971): the error level in a difference 
map is much lower than in e.g. an experimental map

The features in a map scale with (fom)2 – the phases are all-important!
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Peter Atkins’ textbook “Physical Chemistry” has a nice exercise in which a 
one-dimensional electron density is calculated from a set of structure factor 
amplitudes. We can rewrite this exercise to simulate a difference Fourier 
synthesis.

We prepare two sets of “true”structure factor amplitudes ܨ௛௞௟
௛ and ܨ௛௞௟ . To 

stay in the right range we choose these amplitudes such that the difference map 
coefficients will be about 10% of the measured amplitudes. 

To these amplitudes we add random errors ߜ௛ and ߜ to obtain the “observed” 
amplitudes:

௛௞௟ܨ
௛,௢௕௦ ൌ ௛௞௟ܨ

௛ ൅ ௛ߜ

௛௞௟ܨ
௢௕௦ ൌ ௛௞௟ܨ ൅ ߜ

We then calculate the observed difference map amplitudes ∆ܨ௛௞௟
௢௕௦:

௛௞௟ܨ∆
௢௕௦ൌ ௛௞௟ܨ

௛,௢௕௦ െ ௛௞௟ܨ
௢௕௦

and look at the features in the one-dimensional map as a function of the root-

mean-square errors in the observed amplitudes ߜ௛ ଶ and ߜଶ .
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Without errors, i.e. when ߜ௛ ଶ ൌ ଶߜ ൌ 0, the map contains one major 
peak of over 4.5σ at x=0.5 :
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We can now set the errors to the measured structure factors to such 
values that the root-mean-square error is about 1/5 of the root-mean-
square value of the true values of  ∆ܨ௛௞௟ , i.e. a signal-to-noise ratio of 
5:

௛ߜ ଶ ൌ ଶߜ ൌ 0.2 ௛௞௟ܨ∆
ଶ
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How far can we push this? Let us now put the signal-to-noise 
ratio at 1 and look at the map:
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Even at a signal-to-noise ratio of 0.7, the magic of the Fourier 
transform still reveals the main features of the density:

Karol Nass

Thaumatin – an S-SAD benchmark
200 residues, 17 sulfur atoms, high res.
Signal now only ~ 1% but:
SOLVING THAUMATIN USING S-SAD IS A 
SIMPLE EXERCISE IN CONVENTIONAL 
CRYSTALLOGRAPHY

Thaumatin microxtals
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Anomalous differences from S

This is a much weaker signal than the Gd anomalous signal

At 2.0 A
~1% contribution
to F’s!

Data set statistics

Data collection time 15.4 hours

Number of frames collected 6,662,315

Hit rate 22.6%

Number of frames indexed 871,859

Indexing rate 59.9%

Resolution range 36.7 – 2.2 A (2.3-2.2 A)

Rsplit 5.1% (11.9%)

CCano 0.225 (0.116)

Successful S-SAD phasing from SFX data
…but it needed 900k images…
Why do we need so many?
-is it the partiality of the measurements? 
(remember I am spoiled by programs such as 
XDS)
-is it the shot-to-shot variations in the beam?
(remember I am spoiled by synchrotron beams..)
-is it the experimental detectors?
(remember I am spoiled by highly developed, 
almost perfect detectors such as the Pilatus etc.)

Karol Nass
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Why do we need so many images?
Is it one or more of these three factors?
Is it something else?

LCLS spectra (early) CSPAD detector

I fear I have accused all of these factors (and others) of 
being the cause for the need for thousands of images at 
one point or another…

A high viscosity extrusion injector that works in vacuum as well as in air
for use at FELs and at synchrotrons

(Sabine Botha, Bruce Doak)

-Serial data collection from small xtals
-Can use the whole acceptable dose/xtal
for a single shot
-Low sample consumption
-Soluble as well as membrane proteins
-Can work with LCP, grease, polymers, etc.

Botha et al., Acta Cryst D71, 387-397
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CrystFEL

Res. range 15-2.5 (2.6-2.5) A

No. indexed 42,115

Completeness 100% (100%)

Multiplicity 1107 (816)

I/σI 12.4 (4.4)

Rsplit/Rmeas 0.259 (0.335)

CC* 0.923 (0.905)

CCano 0.391 (0.083)

FOM 0.49

PP iso (cen/acen) 1.748 / 1.318

PP ano 1.039

% auto-built ~50%

Synchrotron Serial Crystallography on Lysozyme in LCP
MIRAS phasing using an iodine and a gold derivative (example: I-derivative)
Hit rate around 100%, indexing rate around 25%
Reasonable map but again required >40,000 images
With a Pilatus detector and a synchrotron beam…

.

CrystFEL nXDS

Res. range 15-2.5 (2.6-2.5) A 19-2.7 (2.9-2.7)

No. indexed 42,115 9,098

Completeness 100% (100%) 99% (99%)

Multiplicity 1107 (816) 119 (92)

I/σI 12.4 (4.4) 32.2 (15.5)

Rsplit/Rmeas 0.259 (0.335) 0.264 (0.581)

CC* 0.923 (0.905) 0.996 (0.973)

CCano 0.391 (0.083) 0.743 (0.479)

FOM 0.49 0.44

PP iso (cen/acen) 1.748 / 1.318 1.438 / 1.043

PP ano 1.039 1.077

% auto-built ~50% >90%

Synchrotron Serial Crystallography on Lysozyme in LCP
MIRAS phasing using an iodine and a gold derivative 
nXDS: postrefinement, profile fitting  partiality taken into account explicitly
Kabsch, Acta Cryst D70,2204-2216
Compare pure Monte Carlo with the nXDS approach

.
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CrystFEL nXDS

Res. range 15-2.5 (2.6-2.5) A 19-2.7 (2.9-2.7)

No. indexed 42,115 9,098

Completeness 100% (100%) 99% (99%)

Multiplicity 1107 (816) 119 (92)

I/σI 12.4 (4.4) 32.2 (15.5)

Rsplit/Rmeas 0.259 (0.335) 0.264 (0.581)

CC* 0.923 (0.905) 0.996 (0.973)

CCano 0.391 (0.083) 0.743 (0.479)

FOM 0.49 0.44

PP iso (cen/acen) 1.748 / 1.318 1.438 / 1.043

PP ano 1.039 1.077

% auto-built ~50% >90%

Synchrotron Serial Crystallography on Lysozyme in LCP
MIRAS phasing using an iodine and a gold derivative  

-nXDS data has much stronger signal with fewer images than CrystFEL

.

CrystFEL nXDS

Res. range 15-2.5 (2.6-2.5) A 19-2.7 (2.9-2.7)

No. indexed 42,115 9,098

Completeness 100% (100%) 99% (99%)

Multiplicity 1107 (816) 119 (92)

I/σI 12.4 (4.4) 32.2 (15.5)

Rsplit/Rmeas 0.259 (0.335) 0.264 (0.581)

CC* 0.923 (0.905) 0.996 (0.973)

CCano 0.391 (0.083) 0.743 (0.479)

FOM 0.49 0.44

PP iso(cen/acen) 1.748 / 1.318 1.438 / 1.043

PP ano 1.039 1.077

% auto-built ~50% >90%

Synchrotron Serial Crystallography on Lysozyme in LCP
MIRAS phasing using an iodine and a gold derivative  

-Phases from CrystFEL better than from nXDS (more images?)

.
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CrystFEL nXDS

Res. range 15-2.5 (2.6-2.5) A 19-2.7 (2.9-2.7)

No. indexed 42,115 9,098

Completeness 100% (100%) 99% (99%)

Multiplicity 1107 (816) 119 (92)

I/σI 12.4 (4.4) 32.2 (15.5)

Rsplit/Rmeas 0.259 (0.335) 0.264 (0.581)

CC* 0.923 (0.905) 0.996 (0.973)

CCano 0.391 (0.083) 0.743 (0.479)

FOM 0.49 0.44

PP iso (cen/acen) 1.748 / 1.318 1.438 / 1.043

PP ano 1.039 1.077

% auto-built ~50% >90%

Synchrotron Serial Crystallography on Lysozyme in LCP
MIRAS phasing using an iodine and a gold derivative  

-Autobuilding with ARP/wARP easier from nXDS intensities (I-distributions?)

.
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More “conventional” intensity distributions from nXDS data – reason for easier 
autobuilding?

B-factor 31.3 Å2

B-factor 42.0 Å2
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Conclusions

-SFX data can be phased from anomalous differences even from the 
very weak signal provided by endogenous sulfur with many 
images

-Serial Synchrotron Crystallography data can be phased also but 
again many images needed might suggest neither FEL beam, nor 
CSPAD detectors cause this need

-nXDS approach appears to greatly reduce the need for many 
images

 looking forward to using postrefinement in the new CrystFEL 0.6.0

 if nXDS can be made to accept/index more images even bigger 
gains possible than nXDS already yields
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