Spin-Echo Small-Angle Neutron Scattering

Wim G. Bouwman

Length scales accessible

Outline

- SESANS
 - Principle
 - Model systems
 - Colloidal interaction
 - Cream cheese
 - Dairy
 - Powders
- SESANS+SANS combined
- Larmor project

Larmor precession neutron spin magnetic field

Precession proportional to magnetic field line integral:

$$\phi \propto \int B dL$$

Larmor encoding of scattering angle spin-echo small angle neutron scattering

- Unscattered beam gives spin echo $\phi = 0$ independent of height and angle
- Scattering by sample \rightarrow no complete spin echo \rightarrow net precession angle
- Measure precession angle (or neutron polarization) as a function of magnetic field \rightarrow correlation function $G(\delta)$

Magnetised foils tuned for π -flip: can be considered reversal field

 $3 \ \mu m$ permalloy film

SESANS

spin-echo small-angle neutron scattering

Precesion regions defined by foils and magnets (1)

Precesion regions defined by foils and magnets (2)

Precesion regions defined by foils and magnets (3)

Precesion regions defined by foils and magnets (4)

Classical explanation with Larmor precession Precession angle proportional to: $\phi \propto \int BdL$: scattering angle

$$P = \cos(\phi) = \cos(Q_z \delta_z)$$
$$G(\delta_z) = \frac{1}{k_0^2} \int \frac{d\sigma(\vec{Q})}{d\Omega} \cos(Q_z \delta_z) d\vec{Q}$$

Keller *et al.* Neutron News **6**, (1995) 16 Rekveldt, NIMB **114**, 366 (1996).

SESANS = Fourier transform scattering \Rightarrow density correlation functions

 Polarisation as function spin-echo length = scattering length density correlation function

From structure to polarisation

z [nm]

structure $\gamma(\mathbf{r}) = \int \rho(\mathbf{r}') \rho(\mathbf{r} + \mathbf{r}') d\mathbf{r}'$ density correlation function $G(z) = 2\int \gamma(x, 0, z) dx$ **SESANS** correlation function $P(z) = e^{(G(z) - G(0))}$ polarisation

SESANS on grating: Direct visual data analysis Spacing, ridge width(, height)?

Collaboration with: M. Trinker, E. Jericha & H. Rauch, Technische Universitaet Wien

Colloidal phase transitions as function of concentration

Krouglov et al. J. Appl. Cryst. 36, 1417-1423 (2003)

From structure to polarisation

z [nm]

structure $\gamma(\mathbf{r}) = \int \rho(\mathbf{r}') \rho(\mathbf{r} + \mathbf{r}') d\mathbf{r}'$ density correlation function $G(z) = 2\int \gamma(x, 0, z) dx$ **SESANS** correlation function $P(z) = e^{(G(z) - G(0))}$ polarisation

Present data analysis

- Mostly ad hoc Matlab written real space models
- Recently started to Hankel transform SANS models

SANS to SESANS conversion spheres R=100 nm

$$\tilde{G}(z) = \int_{0}^{\infty} J_{0}(Qz) \frac{d\Sigma}{d\Omega} (Q) Q dQ \qquad P(z) = e^{\frac{t\lambda^{2}}{2\pi} \left(\tilde{G}(z) - \tilde{G}(0)\right)}$$

TUDelft

SASVIEW, work in progress

SasView - Fitting -	Carlana Street Street	a K Can M Y President	
<u>File Edit View T</u> ool Fitting <u>A</u> nalysis	<u>Window</u> Help		
🛅 🏝 🖲 🏟 🍋 📃	FitPage1		
Data Explorer	Fit Panel	C Graph2	
Selection Options	FitPage1		
Select all Data 🔻	I(q) Data Source		
Data	Name : FITI.DAT	10*	∳ FITI.DAT
			M1 [FITI.DAT]
	Model [M1]	103	
	Category 1D Mode		
	Details	10 ²	
	HollowCylinderModel P(Q)*S(Q) None		
Theory	Model Parameters	sity(
	Select All Value Error Min Max [Units]	10 ⁰	
	[A]	10 ⁻¹	
	✓ radius 41.437 +/- 0.0010767 [A]		
	✓ scale 0.21555 +/- 2.6606e-05	10 ⁻²	
	sldCyl 6.3e-06 [1/A^(2)]		
	sidSolv 1e-06 [1/A^(2)]	10-3	21 0
Load Data		10 - 10 -	$O(A^{-1})$ 10 ⁻ 10 ⁻
Delete Data	Polydispersity and Orientational Distribution		
Freeze Theory		C Graph9	
New Plot		1000	
Append Plot To Graph9	Fitting	1 1 • P Residuals for M1[FITI.DAT] • N 600 -	
Send To Fitting	Set Instrumental Smearing None Use dQ Data Custom Pinhole Smear Custom Slit Smear	400 -	
Single Mode	No smearing is selected	он 200 st 0-	
Batch Mode	Set Weighting by Selecting dI Source	-200 -	
		≝ −400 −600	
	Q range Min[1/A] Max[1/A] Masking(2D)	10 ⁻³ 10 ⁻²	10 ⁻¹ 10 ⁰
	Reset 0.00102802 0.244346 Editor		$O(A^{-1})$
•			,
Computation completed!			Console

Depletion interactions in charged, aqueous colloid-polymer mixtures

Kitty van Gruijthuijsen Peter Schurtenberger, Anna Stradner - Lund University, Sweden

Adolphe Merkle Institute

Université de Fribourg Rte de l'ancienne Papeterie CH-1723 Marly T +41 26 300 90 88 F +41 26 300 96 24 www.am-institute.ch

Texture fresh cheeses essential for pleasure eating and shell life time

Fresh cheese-type products have a complex microstructure, built from elements of quite different size and properties:

- Fat droplets, stabilised by protein
- Fat droplet aggregates
- Protein aggregates

Arjen Bot

Effect of processing: native vs denatured / neutral vs acidified

spin echo length [µm]

Bot et al. Food Hydrocolloids **21** 844–854 (2007)

Structure determined of dairy products

Hans Tromp NIZO food research the Netherlands

From milk to yogurt and curd

Tromp et al. Food Hydrocolloids 21, 154-158 (2007)

Kinetic measurement casein aggregation

Simulation and conclusion

• Reaction limited cluster aggregation

Léon van Heijkamp et al. J. Phys. Chem. A (2010)

Granular matter Robert Andersson

- To understand the bulk properties of assemblies of grains we better understand the microstructure of those assemblies.
- What is the distribution of density in an powder?
- How does all this change when we perturb the powder?

SESANS experiments on Si0₂ powders Exercise: interpret both measurements

Two samples:

Compacted, Structure

Saturation at 3mm and a hard sphere repulsion peak

"Poured", Clustered

Correlations extends over measured range due to clusters

Molecular dynamics Extract the SESANS correlation function from MD packings

Conclusion: simulations don't describe features of poured samples. Big holes could explain measurements

R. Andersson et al. Granular Matter 10 407-414 (2008)

Fractal structure of nanoparticles in fluidised bed

Lilian de Martin

Nanopowder has three length regimes

L. de Martin et al. Langmuir (2014) 30 12696

Applications of SESANS

real space, range 30 nm - 18 μ m, no collimation

Spin-echo modulated SANS (SEMSANS)

SANS + SESANS

Beam modulation by Larmor precession Even for large divergent beam

Monochromatic modulation with increasing fields

1-1.7 mT 2 mm 4.4-7.9 mT 0.5 mm

16-26 mT 0.13 mm

10

600

400

200

0 L 0

2

4

6

8

10 12 14

8

2 4 6

~100 μ m modulation period (20-34 mT)

\sim 35 µm modulation period (60-103 mT)

1.4 mm

400

SESANS by modulation

TOF-SEMSANS works!

SANS + SESANS

In time of flight:

- SANS wide *Q*-range
- SESANS scan without field scan
- Low λ SESANS overlaps high λ SANS

TUDelft

The proposal of SKADI – a high intensity SANS with optional focusing optics

LARMOR: Multipurpose polarised Dutch instrument@ISIS Eindhoven, Groningen, Delft for 6 years

ISIS Facility

LARMOR: tool of Dutch Science and Industry

SESANS team and collaboration

SESANS Delft Wim Bouwman Chris Duif Jeroen Plomp Theo Rekveldt **Timofey Kruglov** Robert Andersson-Wicher Kraan Serguei Grigoriev Wouter Stam Oktay Uca Léon van Heijkamp Menno Blaauw Ignatz de Schepper Jurrian Bakker

ChemEnginering Delft University Utrecht, NL NIZO food research, Ede, NL Technische Universitaet Wien Unilever, NL ILL, Grenoble European Spallation Source, SE IZB-Berlin, GE University California, USA