# Serial femtosecond crystallography of GPCRs



#### Cornelius Gati Center for Free-Electron Laser Science / DESY

#### 02.06.2015, SyNeW Workshop, Utrecht





#### **Linac Coherent Light Source**









#### **The SASE effect**







#### What is serial crystallography?



one or few crystals (relatively!) large crystals (relatively!) low flux density oscillation series centering dozens to thousands of crystals small crystals high flux density single or few pattern per crystal random orientation



4





#### Serial Femtosecond Crystallography



#### Chapman et al. 2011 (Nature)





Nature Reviews Cancer 7, 79-94 (February 2007)

6 SCIENCE

### **GPCR Biology**



### **GPCR Structure Timeline**



### **Lipidic Cubic Phase crystallization**



Native-like membrane environment
Transparent, Viscous, Gel-like
High crystal nucleation rate (high density of small crystals

### LCP - on the rise



LCP unique MP: 62 ALL unique MP: 504 LCP/ALL = 12.3 %



#### Total structures: **185** Unique structures: **62**

LCPSTRUCTURES

| 622                                                      | Microbial                      | G Protein-Coupled Receptors:          |                              |                            | Oxidases:                                     |                  |
|----------------------------------------------------------|--------------------------------|---------------------------------------|------------------------------|----------------------------|-----------------------------------------------|------------------|
|                                                          | Rhodonsins                     | <b>β<sub>2</sub>AR</b> 2.40 Å (2RH1   | кО                           | <b>2</b> .90 Å (4DJH)      | <b>ba3</b> 1.80 Å (3S8F)                      |                  |
|                                                          | niodopsins.                    | <b>A<sub>2A</sub>AR</b> 1.80 Å (4EIY) | μΟΙ                          | 2.80 Å (4DKL)              | caa3 2.36 Å (2YEV)                            |                  |
|                                                          |                                | <b>CXCR4</b> 2.50 Å (30DU             | ) <b>NO</b>                  | P 3.00 Å (4EA3)            |                                               | A BEER           |
| bR                                                       | 1.43 Å (1M0K)                  | <b>D3R</b> 3.15 Å (3PBL)              | δΟΙ                          | <b>R</b> 3.40 Å (4EJ4)     | Turner                                        |                  |
| hR                                                       | 1.70 Å (2JAF)                  | H1R 3.10 Å (3RZE)                     | PAI                          | (1 2.20 A (3VW7)           | Transpor                                      | ters:            |
| sR II                                                    | 2.10 A (1H68)                  | β <sub>2</sub> AR/Gs 3.20 Å (3SN6     | SH FU                        | 2B 2.70 A (4IB4)           |                                               |                  |
| sR II/ tr                                                | 1.93 A (1H2S)                  | <b>S1P</b> <sub>1</sub> 2.80 Å (3V2Y  | SM SM                        | $_{1B}$ 2.70 A (4IAR)      | CAX 2.30 Å (4KPP)                             | STATES           |
| SR<br>ARII                                               | 2.00 Å (TAIO)<br>3.20 Å (3AM6) | M2R 3.00 A (340N                      | ) SM                         | <b>5</b> 3 30 Å (41 68)    | VCX1 2.30 Å (4K1C)                            |                  |
| ChR                                                      | 2.30 Å (3UG9)                  | M3R 3.40 A (4DA)                      | CRI                          | <b>1</b> 2.98 Å (4K5Y)     | <b>POT</b> 1.90 Å (4IKV)                      | 3372             |
| ESR                                                      | 2.30 Å (4HYJ)                  | NISKI 2.80 A (4GKV                    | CCI                          | <b>2.71</b> Å (4MBS)       | <b>MATE</b> 2.40 A (3VVN)                     |                  |
|                                                          |                                |                                       |                              | •                          |                                               |                  |
| Photosynthetic<br>Proteins:<br>RC, R Sph<br>2.2 Å (2GNU) |                                | Enzymes:                              | Ion Channels:                | Peptides:                  | Outer<br>Membrane<br>Proteins:<br>BtuB 1.95 Å | (2GUF)           |
|                                                          | 2.45 Å (2FKW)                  |                                       |                              |                            | OpcA 1.95 Å<br>OmpF 1.90 Å                    | (2VDF)<br>(3POQ) |
| Say the                                                  |                                | <b>DgkA</b><br>2 05 Å (37F3)          | <b>KvLm</b><br>3 10 Å (4H33) | <b>gD</b><br>1.08 Å (2Y5M) | Intimin 1.80 Å                                | (4E1S)           |
|                                                          |                                |                                       | 3. 0 ( 1 33)                 |                            |                                               |                  |
| ask                                                      | 1.00 / (200510)                | 2.05 A (52L5)                         |                              | 1.00 / (21510)             | Invasin 1.80 Å                                | (4E1T)           |



#### **Sample preparation for LCP-SFX**



### **Crystal density assessment**



### Liu et al. **2014**, Nature Protocols 9:2123

(a,b) Single-slice UV-TPEF images (depth of field  $\sim 20 \ \mu$ m) of two preparations of lysozyme crystals embedded in LCP captured by SONICC imager (Formulatrix).

(c,d) Outlines of microcrystals from images in a,b, obtained by an automatic crystal detection and counting algorithm, implemented using the ImageJ program (http://imagej.nih.gov/ij/).



13

### **LCP** injector



Weierstall et al., 2014 Nat Commun 5:3309





### **LCP-SFX** data collection



Slow motion video (slowed down 30x) XFEL pulses attenuated to 1% of intensity

Diameter: Flow velocity: Flow rate: Distance between shots: 50 μm 2.5 mm/s 300 nL/min 20 μm



### Adenosine A<sub>2A</sub> receptor (LCLS, Feb, 2012)





#### New LCP host lipid eliminates strong wide-angle powder diffraction background (LCLS, June, 2012)

LCP host lipid: 9.9 MAG





LCP host lipid: 7.9 MAG







### 5-Hydroxytryptamine-2B (5-HT<sub>2B</sub>)

- Serotonin receptor
- CNS / behavioral
- ➤ cardiovascular
- immune system regulation
- recreational drugs

2.7 Å synchrotron structure available
 (Wacker et al. 2013)





### Differences 5-HT<sub>2B</sub>-SYN and -XFEL model



**Cyan: Synchrotron** 

**Magenta: XFEL** 



Liu et al, Science (2013)

### Differences 5-HT<sub>2B</sub>-SYN and -XFEL B-factors



**Synchrotron** 

XFEL



Liu et al, Science (2013)

## Bi-functional peptide DIPP-NH<sub>2</sub> for delta-opioid (δ-OR) receptor

- >ORs (μ-, κ-, δ-, NOP) involved in management of pain, mood states / neurophysiological processes
- Regulated by opioid peptides, (e.g. endomorphins, etc.)
- Alkaloid opiates are the most widely used analgesics for treatment of moderate to severe pain
- Single compounds with a mixed δ-OR antagonist/μ-OR agonist function have beneficial properties
- > 1.8 Å DOR/naltrindole synchrotron structure was available



#### Crystals of $\delta OR$ in complex with bi-functional peptide DIPP-NH<sub>2</sub>







Fenalti *et al*, NSMB (2015)

### **Data collection statistics**

|                                    | Synchrotro                | on    | XFEL                      |       |
|------------------------------------|---------------------------|-------|---------------------------|-------|
| Data collection                    |                           |       |                           |       |
| Space group                        | C 1 2 1                   |       | C 1 2 1                   |       |
| Cell dimensions                    |                           |       |                           |       |
| a, b, c (Å)                        | 160.55, 86.12, 94.68      |       | 156.2, 89.3, 96.4         |       |
| $\alpha, \beta, \gamma$ (°)        | 90.0, 92.2, 90.0          |       | 90.0, 92.3, 90.0          |       |
| Resolution (Å)                     | 40.0-3.30 (3.51-3.30)*    |       | 33.5-2.70 (2.80-2.70) *   |       |
| $R_{\rm merge}$ or $R_{\rm split}$ | $0.173 (0.875) R_{merge}$ |       | $0.118 (0.879) R_{split}$ |       |
| $I/\sigma I$                       | 11.7 (1.9)                |       | 6.0 (1.3)                 |       |
| Completeness (%)                   | 96.3 (97.3)               |       | 100 (100)                 |       |
| Redundancy                         | 4.3 (4.4)                 |       | 560 (209)                 |       |
|                                    |                           |       |                           |       |
| Refinement                         |                           |       |                           |       |
| Resolution (Å)                     | 37.97-3.28                |       | 33.45-2.70                |       |
| No. reflections                    | 17,904                    |       | 34,653                    |       |
| $R_{\rm work} / R_{\rm free}$      | 0.239 / 0.273             |       | 0.212 / 0.230             |       |
| No. atoms                          | А                         | В     | А                         | В     |
| Protein                            | 2,921                     | 2,901 | 3,039                     | 3,044 |
| DIPP-NH <sub>2</sub>               | 49                        | 49    | 49                        | 49    |
| $Na^+$                             | 0                         | 0     | 1                         | 1     |
| Lipids and other                   | 14                        | 0     | 80                        | 79    |
| <i>B</i> -factors                  |                           |       |                           |       |
| Protein                            | 93.1                      | 96.1  | 66.3                      | 66.5  |
| DIPP-NH <sub>2</sub>               | 93.8                      | 101.5 | 62.7                      | 56.8  |
| $Na^+$                             | N/A                       | N/A   | 66.2                      | 66.1  |
| Lipids and other                   | 92.5                      | N/A   | 74.3                      | 77.8  |
| r.m.s. deviations                  |                           |       |                           |       |
| Bond lengths (Å)                   | 0.007                     |       | 0.005                     |       |
| Bond angles (°)                    | 1.1                       |       | 0.9                       |       |



### $\delta OR$ in complex with bi-functional peptide DIPP-NH<sub>2</sub>



XFEL



Fenalti et al, NSMB (2015)



Fenalti et al, NSMB (2015)

#### AT1 mediated signaling cascades



Hypertension: → Renin inh. → ACE inh. → ARBs

- Angiotensin II type 1 receptor (AT<sub>1</sub>R) is a primary regulator for blood pressure maintenance
- G protein independent β-arrestin mediated signaling by AT<sub>1</sub>R confers cardio-protective benefits
- ZD7155, a high affinity antagonist and precursor to the anti-hypertensive drug candesartan



Higuchi et al, Clinical Science (2007)

### **AT1R data collection**



С



**Crystals in LCP** 

Precipitants for crystallization

- A. Bright field image
- B. UV fluorescence image
- C. Crystal sample in LCP syringe

| AT <sub>1</sub> R-ZD7155-XFEL                |                            |  |  |  |  |  |
|----------------------------------------------|----------------------------|--|--|--|--|--|
| Data collection                              |                            |  |  |  |  |  |
| Temperature (K)                              | 294                        |  |  |  |  |  |
| Wavelength (Å)                               | 1.56                       |  |  |  |  |  |
| Beam size (µm)                               | 1.5×1.5                    |  |  |  |  |  |
| Average crystal size (µm)                    | 10×2×2                     |  |  |  |  |  |
| Flux (ph/pulse) / Pulse duration (fs)        | 1.1011 / 36                |  |  |  |  |  |
| Max dose per crystal (MGy)                   | 75                         |  |  |  |  |  |
| Space group                                  | C2                         |  |  |  |  |  |
| Unit cell parameters <i>a,b,c</i> (Å); β (°) | 72.8, 41.0, 167.7; 99.4    |  |  |  |  |  |
| Number of collected frames                   | 2,764,739                  |  |  |  |  |  |
| Number of hits / indexed images              | 457,275 / 73,130           |  |  |  |  |  |
| Number of total / unique reflections         | 14,415,424 / 11,190        |  |  |  |  |  |
| Resolution (Å) <sup>a</sup>                  | 32.64 - 2.90 (3.00 - 2.90) |  |  |  |  |  |
| Completeness (%)                             | 100.0 (100.0)              |  |  |  |  |  |
| Multiplicity                                 | 1,288 (215)                |  |  |  |  |  |
| Ι/σ(I)                                       | 8.2 (0.84)                 |  |  |  |  |  |
| CC* <sup>b</sup>                             | 0.999 (0.872)              |  |  |  |  |  |
| $R_{split}$ (%) <sup>c</sup>                 | 9.8 (140)                  |  |  |  |  |  |
| Refinement                                   |                            |  |  |  |  |  |
| Resolution (Å)                               | 32.64 - 2.90               |  |  |  |  |  |
| Number of reflections / test set             | 11,167 / 576               |  |  |  |  |  |
| R <sub>work</sub> / R <sub>free</sub> (%)    | 22.8 / 27.4                |  |  |  |  |  |
| Number of atoms                              | 1                          |  |  |  |  |  |
| Receptor / BRIL                              | 3,077                      |  |  |  |  |  |
| Ligand                                       | 33                         |  |  |  |  |  |



### AT1R structure and ZD7155 binding mode



### Serial crystallography at synchrotron



Nogly et al. IUCrJ, 2015



### **LCP-SFX with Soluble Protein Crystals**



Fromme *et al.* To be submitted



Lysozyme (14 kDa)

Phycocyanin (~200 kDa) <sup>30</sup>

### Summary

- Established LCP-SFX
  - Small crystals (<10 μm)
  - Ambient temperatures
  - No harvesting
  - Low sample consumption (<0.3 mg protein)</li>
  - Increased resolution with respect to synchrotron data
  - Works with soluble protein crystals
- First human membrane protein at RT (serotonin receptor)
- Recognition of bi-functional peptide (opioid receptors)
- Novel GPCR structure (angiotensin receptor AT1R)

### **Future Directions**

- Further improvements (smaller crystals, lower protein consumption, faster data collection)
- High resolution (< 2 Å) RT GPCR structure
- High dynamic range detectors needed to collect data from samples with high salt content
- Experimental phasing
- Structures of complexes
- Molecular movies



### **Acknowledgements**

Wei Liu, Andrii Ishchenko, Daniel Wacker, Chong Wang, Gye Won Han, Gus Fenalti, Seva Katritch, Haitao Zhang, Linda Johansson, Ben Stauch, Alex Batyuk, Ray Stevens, **Vadim Cherezov** 

Henry Chapman Tom White, Anton Barty Markus Metz

SLAC NATIONAL ACCELERATOR LABORATORY

Sebastien Boutet Garth Williams, Claudiu Stan, Andy Aquila, Marc Messerschmidt



Тне

SCRIPPS **Trinity** 



RESEARCH Martin Caffrey, Dianfan INSTITUTE Li



Bryan Roth Patrick Giguere X.-P. Huang



ARIZONA STATE

Uwe Weierstall, Petra Fromme John Spence, Raimund Fromme Shibom Basu, Daniel James, Dingjie Wang. Nadia Zatsepin, Chris Kupitz, Ingo Grotjohann, Garrett Nelson, Marc Hunter



### Thank you!

