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RDG: Spatially Averaged Intensity I(q)
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by introducing the pair distance distribution function (PDDF) p(r) with
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The Scattering Problem and the 
Inverse Scattering Problem

For the solution of the inverse Problem it is essential to be able to calculate the 
PDDF form the experimental scattering curve with minimum termination effect 
without model assumptions.
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From experimental data to the PDDF - IFT

All transformations T1 to T4 are linear and are mathematically well defined, 

this does not hold for their inverse transformations!

Solution: Indirect Fourier Transformation  IFT

O. G. (1977). J. Appl. Cryst., Vol. 10, 415-412.
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The Principles of the Indirect Fourier 
Transformation I
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Other IFT Applications - Overview

The IFT technique can also be applied to data from cylindrical or lamellar 
particles as well as to polydisperse systems
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Tomato Bushy Stunt Virus,  15mg/mL
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PDDF is very useful for model improvement!

Comparison of the experimental PDDF of a core enzyme (points) with the 
theoretical PDDFs of two different models: 

#2 suggested by literature data!   #1 best fit

O. Meisenberger et al., (1980). FEBS Lett., Vol. 122, 117-120.
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Model Calculations vs. Surfactant Self-Assembly

Pair distance distribution functions p(r) for the binary mixture D2O/C12D25E5
at 5 °C (circles), 32 °C (squares), and 70 °C (triangles). These
functions are obtained by indirect Fourier transformation of the SANS spectra.

R. Strey et al., J. Chem. Phys. (1996)  Vol. 105, No. 3, 1175-1188.
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Polydisperse Systems

Scattering curves of Gaussian size distributions of spheres with varying 
width (see inset).
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Polydispersity Analysis
Gold Nano – Colloids, R1 » 3nm, R2 » 7nm, Raw SAXS Data and Fit
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Polydispersity Analysis – Volume Distribution
Gold Nano – Colloids, R1 » 3nm, R2 » 7nm

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
v(

R
)  

[a
.u

.]

R  [nm]

Au5vol-10sp.POR G5+14vol-12nor.por go14nm30003.por



14

Deconvolution of the PDDF – The Magic Square
Direct Structure Analysis

Deconvolution of the PDDF p(r) into the radial density ∆ρ(r) is possible for:

 spherical symmetry

 circular cylinders with centro-symmetric radial density distributions

 centro-symmetric lamellae without in-plane inhomogeneities
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Mixed Surfactant Systems – Vesicles 
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Co-operation with Eric Kaler, Delaware
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Pair Distance Distribution Functions p(r)
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Thickness Pair Distance Distribution Functions pt(r)
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Scattering Contrast Profiles - no Salt
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D. I. Iampietro,, et al., J. Phys. Chem. B (1998), 102, 3105-3113. 
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Protein – Nano –Tubes  (α-Lactalbumin) 

α-lactalbumin building blocks nanotube

– 3% (2.1mM) α-lac in 75 mM Tris Buffer, pH 7.5 
– Molar ratio (R) calcium/α-lac=3 (6.2mM)
– Serine Protease BLP – 1/250 (molar ratio)
– Optimum temperature T=50ºC
– Reaction monitored by Dynamic Light  Scattering

Partial
hydrolysis

Co-operation with Kees de Kruif, NIZO food research BV
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Growth of the Protein – Nano –Tubes with Time
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Radial Electron Density Distribution in the Cross-Section
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TEM Picture of α-Lactalbumin Nano –Tubes 

300 nm

J. F. Graveland-Bikker et al., J. Appl. Cryst. (2006) 39, 180–184. 
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Concentrated, Interacting Systems
Theoretical Background 

Assumption of monodisperse globular particles:

I(q) = n.P(q).S(q)

n  ...    Particle density
q ...   Scattering vector
I(q) ...  Scattering Intensity
P(q) ... Form Factor P(q) ↔ p(r)
S(q) ... Structure Factor [S(q) - 1] ↔ [g(r) -1]
Interaction Potential: Hard Spheres Potential 
Closure relation: Percus-Yevick-Approximation (analyt. Solution)

Kinning & Thomas, Macromolecules (1984), 17
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Particle Form Factor P(q)  - Artists View

Asterix Legionnaire,   associated by Judith Brunner-Popela
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Structure factor S(q)  - Artists View

 Le Grand Fossé associated by Judith Brunner-Popela
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Fourier Transformation

I(q) = n.P(q).S(q)

Form Factor P(q) ↔ Pair Distance Distribution Function p(r)

Structure Factor [S(q) - 1] ↔ Total Correlation Function [g(r) -1] r2

Due to the nearly identical structure of these equations it is obvious
that it is not a trivial task to split the scattering intensity into these
factors by mathematical means
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Schematic Presentation of the Influence of 
Interaction
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Basic Principles of the GIFT Method
Generalized Indirect Fourier Transformation

 Simultaneous determination of the form factor and the structure factor with a 

minimum of a priori information

 Model free determination of the form factor, only a maximum dimension has to 

be estimated 

 Structure factor is determined with an adequate model (Percus-Yevick

approximation)

 Polydispersity is taken into account by simple averaging (Save(q)) or by the 

correct hard spheres model (Seff(q), Vrij 1979)

 Determination of both terms by a specially designed coupled and stabilized 

Nonlinear Least Squares  method (Boltzmann Simplex Simulated Annealing)

Brunner-Popela, J. et al. (1997) J. Appl. Cryst. 30, 431 

Bergmann, A., et al. (2000) J. Appl. Cryst. 33, 1212 -1216.

Fritz, G., et al. J. Chem. Phys. (2000) 113, 9733-9740. 



Reciprocal Space ←   FT →    Real Space
Brunner-Popela, J. and Glatter, O. (1997) J. Appl. Cryst. 30, 431
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Mean Deviation Hyper Surface, Solution:
Boltzmann Simplex Simulated Annealing
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Pluronics P94,   
Desmeared SAXS Scattering Functions I(q)
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P94,    Pair Distance Distribution Functions
SAXS & SANS
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At higher concentration: just more of the same micelles!

BUT: Effective volume fraction about twice the polymer 
volume (hydration)!
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P94, SAXS & SANS 
Radial Scattering Length Density Distribution 
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 Difference electron density in the core negative! 
 Bulk PPO has a higher electron density than water!
 Core of the micelles is not equal to bulk phase! 33



Controlling the Internal Nanostructure of MLO – ISAsomes
Addition of Oil (Tetradecane, TC), Characterized by SAXS

Addition of oil changes 
the internal structure of 
the system!

Different oils can be 
used!

Oleic Acid: pH sensitive!

T = 25°C

O
IL

 C
O

N
TE

N
T

Yaghmur, A.et.al. Langmuir (2005) 21, 569.           Yaghmur, A. et.al. Langmuir (2006), 22, 517. 
Salonen, A. et.al., Langmuir (2008) 24, 5306.         Salentinig, S. et al. Langmuir, (2010), 26, 11670.
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MLO: Monolinolein

34
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Internal Structure of ISAsome Emulsions
H2O – MLO – TC. Stabilizer: Pluronic F127
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Transfer Kinetics of Lipids
Moitzi, Ch. et al.  Advanced materials, (2007) 19, 1352-1358.

What happens if ISAsome emulsions with different compositions are 
mixed? Do they equilibrate? Why and How?

Dispersion: MLO/TC/F127+ 
H2O

36
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Transfer Kinetics:
Equilibration of Oil Content driven by 

Entropy of Mixing
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δ-value RH [nm] Width [%]

84 116.4 24.7

70.5 118.1 16.7

57 116.3 20.8

84 + 57 118.7 22.1

MLO/decane/F127 
dispersed phase:1%

Is there a Particle Growth (Fusion)? 
→ 3D-DLS   (turbid system!)

No considerable change 
in particle sizes!

Different driving force 
to Ostwald ripening!

Compositional ripening!

Entropy of mixing vs. 
Laplace pressure



39

Effect of Additional Stabilizer F127

MLO / dodecane / F127 / water

RATE DEPENDS ON THE
CONCENTRATION OF STABILIZER

>>> assistance of 
oil transport by 
free stabilizer (micelles).
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Conclusions

 Scattering techniques work well for the characterization of soft matter

 Real space information is important 

 Monodisperse systems (size, shape, internal structure)

 Polydisperse systems (size distribution)

 Concentrated interacting systems are challenging but give important 
information! 

 Liquid crystalline systems can be characterized best by SAXS

 Lipid transfer kinetics can be studied in dispersed LC systems

 Complementary techniques (like DLS, like NMR or Cryo-TEM) are 
important

 Main lesson: be open for unexpected results!
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