## Structure and dynamics of membrane transporters - the hybrid approach SYNEW 2015

Albert Guskov University of Groningen

## Outline

- Why membrane proteins?
- Different types of membrane transporters
- Different mechanisms of transport
- Bright future

# Pro- and eukaryotic cells



#### Membrane structure



#### Membrane proteins in human genome



~25% of genome!

The human tissue–enriched proteins.All tissue-enriched proteins are shown for 13 representative tissues or groups of tissues, stratified according to their predicted subcellular localization.



Mathias Uhlén et al. Science 2015;347:1260419

# Types of transporters



Rocker-switch mechanism



Slotboom (2014)



Gated-pore



Slotboom (2014)

Examples

#### Elevator



#### Examples

Toppling

Examples



## Need for structures!

- What is the molecular mechanism of transport?
- Can we interfere with (block, modulate, enhance) this transport?
- Can we fix malfunctioning transporters?
- Can we copy this transport for biotechnology?
- How can we get reliable structures, and are the structures enough to answer all these questions?

# Protein Crystallography



>100.000 structures!



#### Some

1934 - Diffraction from a pepsine crystal (Bernal & Hodgkin) 1954 - Phase problem solved by MIR technique (Perutz et al., Proc. Royal Soc. Lond. A 225, 287–307

1958 - Myoglobin structure (Kendrew et al., Nature 185, 422–427 1978 - Tomato bushy stunt virus structure (Harrison et al., Nature 276, 368– 373

1985 - First membrane protein structure (photosynthetic center) (Michel et al., Nature, 318 618–624

2000 - high-resolution Ribosome structures (Yonath, Steiz, Ramakrishnan) 2007 - First mammalian GPCR structure (Kobilka et al., Nature 450, 383-387

## Limitations of crystallography



Proteins in crystal is not in native conformation

Radiation damage



Static picture!

# Synergetic approach



Examples of different transport mechanisms: 1. CorA Gated-channel

## The mystery of Mg



The most abundant divalent cation in living cells Versatility – from structural roles to signalling (photosynthesis, Calvin cycle, ATP, DNA, RNA, enzymes, membrane walls...) The biggest difference between hydrated and ionic volume ~ 400 times! • And very strong binding of water molecules due to the high charge density

### 2006: three structures of CorA



2.9Å Eshaghí et al

3.9Å Lunin et al

3.7Å Payadeh & Paí



- Are all CorAs pentamers or some are tetramers? Only Mg
- What is the structure of the periplasmic loop (and thus selectivity filter)?
  - How does the transport occur ( through the long hydrophobic "neck")? What is the actual gating mechanism?

# The sequence diversity of the superfamily

T.maritima (Bacteria)SVSNKTNEVMKVLTIIATIFMPLTFIAGIYGMNFEYMPELRM.jannaschii (Archaea)LENIKMNQIMKILTMVTTIFAVPMWITGIYGMNFSYLPLANC.cerevisiae (Fungi)NVRNQLIQFELLLTTATFVVAIFGVVAGIFGMNFEIDFFNQA.thaliana (Plantae)SHRNVMMRLNLQLTMGTFSLSLFGLMGVAFGMNLESSLEEDH.sapiens (Animalia)ANRNSLMLLELKVTIYTLGFTVASVLPAFYGMNLKNFIEES

Almost no identity among Kingdoms, Very low identity even within Kingdoms (17-25%)

# The general architecture





Guskov et al., (2012) PNAS,

## Comparison with TmCorA



# Concavity and selectivity filter



#### GMN motif





### Putative mechanism



# Tunnel profile



Calculated with MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels K Berka et al Nucleic Acids Research, 2012, 1–6 doi:10.1093/nar/gks363

# Ion permeation energy profile



Closed conformation

#### Putative open conformation

Calculated with APBS mem: A graphical interface for electrostatics calculations at the membrane. KM Callenberg et al (2010) PLOS ONE 5(9): e12722 Examples of different transport mechanisms: 2. Facilitated diffusion (Gated-pore) by Pnu vitamin transporters

### **B-Vitamins**

Pnu proteins are poorly characterised membrane transporters involved in vitamin uptake in bacteria



PnuC

#### Putative mechanism



Facilitated diffusion coupled to the metabolic trapping

# Crystal structure of PnuC



Jaehme, Guskov, Slotboom (2014) Nat Struct Mol Biol,

# Ligand coordination



# The binding site



• The cavity is sealed from both sides - fully-occluded ligand-bound state

## Intracellular (cytoplasmic) gate

 two layers of symmetry related residues



# Periplasmic gate

- The thick hydrophilic layer
- possible access path shown with the red dashed oval



#### Mechanism



Examples of different transport mechanisms:3. Secondary active transport of glutamate/aspartate via an elevator mechanism

# Mammalian glutamate transporters take up the excitatory neurotransmitter glutamate



Vandenberg & Ryan (2013) Physiol Rev 93: 1621-1657

#### Glutamate (aspartate) transporters in eu- and prokaryotes

 Regulation of [Glu]<sub>extra</sub> to maintain synaptic signalling processes
 Glu is the predominant excitatory neurotransmitter
 Faster transport (ms)



Vandenberg & Ryan (2013) Physiol Rev 93: 1621-1657

Prefers Asp over Glu
Asp is a nutrient
Slower transport (min)

#### Sequence identity

- 30-35% between EAAT(1-5) (Human) and GltPh
- 45-55% among EAAT

# Crystal structures of archaeal aspartate transporters

#### General architecture



• E.Gouaux, O. Boudker and D.J. Slotboom labs





# The trimerization domains form a scaffold in the membrane,

move





### Closer look at the elevator



Two helical hairpins (HPI and HP2) are the possible lids ("doors") that can open

The crystal structures explain the strong cooperativity between Na+ and Aspartate binding

#### Conserved

#### position of the substrate





substrate-free

Arg401: Strictly conserved Essential for transport But also for re-orientation

Jensen et al., (2013) Nat Struct Mol Biol. 20(10):1224

#### Mutations of Arg401 prevent substrate binding



Fo-fc electron density for the substrate at  $-3\sigma$ 

Verdon et al. (2014) eLife, 3:e02283

# Sodium binding sites



Jensen et al., (2013) Nat Struct Mol Biol. 20(10):1224

#### Geometry of binding sites is destroyed





# Single-Molecule Studies



### FRET



Erkens et al., (2013) Nature, 502(7469):119

Examples of different transport mechanisms:
4. Primary active transport via an toppled elevator mechanism?

#### General architecture



# Toppling



#### Possible mechanism of transport



# Future is here?





It is extremely brilliant it generates pulses on the femto (10<sup>-15</sup>) second scale!

From J. Ullrich, A. Rudenko, R. Moshammer (2012) Ann. Rev. Phys. Chem. 63:635



### principle



R. Neutze et al., (2000) Nature, 406(6797):752

# Unprecedented possibilities for structural biology with XFELs

No need for time- and resource-consuming optimisation to get bigger crystals

Collecting (room-temperature) data without radiation damage and from very tiny crystals!







But there are more problems: low hit rate, non-trivial indexing (thousands of images are required),

and you need **ml** of highly concentrated suspension of microcrystals...

### L

Flow-rate down to 3-300nl/min that equals to ~0.3mg of purified protein!



Weierstall, U. et al., (2014) Nature Communications 5: 3309



Benefits:

- native-like environment
- Type-I crystals
- No cryo-protection necessary



Liu et al., (2014) Nature Protocols 9:2123

Caffrey et al., (2012) Biochemistry 51(32):6266



# Alternative delivery methods

Just use a big crystal if you have it – Suga et al., (2015) Nature 517:99 Photosystem Il structure at 1.95Å resolution fixed-target chips (theoretically 100% hitrate)





Heymann et al., (2014) IUCRJ 1:349

# Data Collection and processing issues

- Crystals are not always homogenous (different sizes)
- Crystals intersect the beam in random orientation
- Crystals stand still during exposure (no rotation)
- Only partial reflections are recorded
- Fringes rather than neat spots
- Per shot variation in photon energy and intensity of the pulse
- Enormous amount of data per experiment

Most issues can be resolved with Monte Carlo algorithms (CrystFel, cctbx.xfel) or by other software (nXDS)

#### The main issue - Facility and Beam time availability



But SFX can be also performed at the most of modern synchrotrons!

# abbreviations competition

in meso in situ

MX SFX IMISX



Huang et al., (2015) Acta Cryst D71

+:No harvesting! RT No injectors Reduced amounts of samples Easy setup less data needed than with XFEL -: only RT, sensitive to t variations (data collection, delivery), short shelf lifetime

#### benefits of using XFEL for timeresolved studies

Small micro crystals allow homogenous excitation Data is free from radiation damage caused by X-Rays and Laser Any sort of chemical reactions (including irreversible) can be studied

No problem of "cryo-trapping"

## Time-resolved studies



Schmidt M (2013), Adv in Con Mat Phys, doi: 10.1155/2013/167276

Wang et al., (2014) J of Synchr Rad. 21:1364

# Caged Glutamate (Aspartate)



# Acknowledgements and collaborations

CorA project Said Eshaghi,

Aline Reynaud, Newsha Sahaf, Nurhuda Nordin

Pnu project Michael Jaehme, Rajkumar Singh, Barbora Waclawikova, Ria Duurkens, Dirk J Slotboom





#### GltTk project

Sonja Jensen, Joana Luís da Silva Santos Guimarães Gianluca Trinco, Dirk J Slotboom

ECF project

Lotteke Swier, Weronika Stanek, Maria Dosz-Majsnerowska Dirk J Slotboom





#### XFEL/SFX

Vadim Cherezov, Andrii Ishchenko, Thomas Barends, Anastasya Shilova, Manfred Burghammer

**FRET** Antoine van Oijen

#### TR Arwen Pearson

