

## **Grazing Incidence X-ray Scattering and Diffraction** Theory and applications

#### **Giuseppe Portale**

NWO, DUBBLE@ESRF European Synchrotron Radiation Facility Grenoble (France)

SyNeW 2015 Mini-school, Uthecht June 2, 2015





## Outline

- Experimental considerations
- Brief introduction to the Distorted Wave Born Approximation
- Example GISAXS
- GIWAXS + example

#### **Transmission vs Gracing incidence geometry**



#### **GISAXS and GIWAXS applications**

Long-range ordering of block copolymers for dense data storage



Composite membranes for artificial photosynthesis



Inorganic nanocomposites for electrochromic windows



Batteries & fuel cells



**OPV BHJ** materials



Lithographic patterning



Self-assembly of nanoparticles in block copolymer thin films



Nanocomposites for solar cells

Virus nanofiber tissue engineering materials



Block copolymer self-assembly



#### **Probing polymers and soft matter length scales**



#### **Experimental setup & conventions**



#### <u>Grazing Incident Small Angle X-ray Scattering</u>

Characterization of nanoscale density correlations and/or the shape of nanoscopic objects at surfaces, at buried interfaces, or in thin films



Surface sensitive – possibility to study structures at the interfaces

C Surface sensitive (minimum penetration depth 10 nm)

High scattering intensity ideal to perform in-situ and time-resolved study

2D-GISAXS: lateral and normal ordering probed at the same time



#### X-ray reflectivity (XRR)



- Point detector with collimator
- Information about  $\rho_e(z)$ , roughness, thickness



 $\mathbf{q}_{z} = \mathbf{k}_{f} - \mathbf{k}_{i}$ 

 $\alpha_f = \alpha_i$ 

k,

 $\alpha_i$ 

#### **Regimes for GISAXS analysis**

 $\alpha_i < \alpha_c$  (polymer) : evanescent regime

- $\alpha_{c}$  (polymer) <  $\alpha_{i}$  <  $\alpha_{c}$  (substrate) : dynamic regime
- $\alpha_i > \alpha_c$  (substrate) : kinematic regime

In the kinematic regime:

$$\frac{d\sigma}{d\Omega}(\boldsymbol{q}) = \frac{1}{N} \sum_{i} \sum_{j} F^{i}(\boldsymbol{q}) F^{j,*}(\boldsymbol{q}) exp\left[i\boldsymbol{q}(\boldsymbol{R}_{\parallel}^{i} - \boldsymbol{R}_{\parallel}^{j})\right]$$

In the simple Born Approximation (BA):  $F^{i} = \int_{V} \rho(\mathbf{r}) \exp(i\mathbf{q} \cdot \mathbf{r}) d\mathbf{r}$ 

#### **Experimental considerations**



#### Effect of using a small incident angle



#### Surface scattering – reflection and refraction



X-ray Index of refraction:  $n = 1 - \delta + i\beta$  $\alpha_i > \alpha$ α Snell's law:  $n_1 \cos \alpha = n_2 \cos \alpha'$  $\alpha_i < \alpha_c$  $\alpha_f = \alpha_i$ 

Total reflection

#### Surface sensitivity (penetration depth)

Limited penetration into the sample  $\rightarrow$  enhanced surface sensitivity



#### **Reflection and Transmission coefficients**

For the bare substrate:

 $k_{iz} - k_{tz}$ 

$$E(\mathbf{r}, \mathbf{k}) = E_0 e^{-ik_{\parallel}r_{\parallel}} \begin{cases} e^{-ik_{i,z}z} + re^{ik_{i,z}z} & for \ z > 0\\ te^{-ik_{t,z}z} & for \ z < 0 \end{cases}$$

$$r = \frac{t,z}{k_{i,z} + k_{t,z}}$$
$$t = \frac{2k_{t,z}}{k_{i,z} + k_{t,z}}$$

Fresnel reflectivity:  $R_F = |r|^2$ 

Fresnel transmission: 
$$T_F = |t|^2$$



 $n = 1 - \delta + i\beta$ 



#### Nano-objects supported on a substrate

$$\frac{d\sigma}{d\Omega} = r_e^2 |\Delta \rho|^2 \left| \mathcal{F}(\boldsymbol{q}_{\parallel}, k_z^i, k_z^f) \right|^2 \qquad \boldsymbol{q} = \boldsymbol{k}_f - \boldsymbol{k}_i$$

 $\mathcal{F}(\boldsymbol{q}_{\parallel}, k_z^i, k_z^f) = F(\boldsymbol{q}_{\parallel}, q_z^1) + r(\alpha_i)F(\boldsymbol{q}_{\parallel}, q_z^2) + r(\alpha_f)F(\boldsymbol{q}_{\parallel}, q_z^3) + r(\alpha_i)r(\alpha_f)F(\boldsymbol{q}_{\parallel}, q_z^2)$ 







#### **Distorted Wave Born Approximation - DWBA**



For a simple sphere:

$$F_{sphere}(q,R) = 4\pi R^3 \frac{\sin(qR) - qR\cos(qR)}{(qR)^3} e^{iq_z r}$$

**Classical SAXS** 

#### Nano-objects supported on a substrate





Yoneda peak for Si substrate:  $\alpha_{\rm f}$  =  $\alpha_{\rm c}$ 

#### Nano-objects supported on a substrate: effect of increasing $\alpha_i$

Au nanoparticles R = 25nm on glass substrate



# For supported nano-object the maximum scattered intensity is at the critical angle of the substrate

#### **Particle shape sensitivity**



Calculations performed using the IsGISAXS software (R. Lazzari)

#### **Calculated form factors under the DWBA**



Renaud G., Lazzari R., Leroy F., Surf. Sci Rep. 64 (2009), 255-380

#### Now with spatial correlation between nano-objects

If spatial correlation exists between objects, an interference function has to be considered:

Decoupling approximation (DA):  $I(q) \propto I_d(q) + |\langle F(q) \rangle|^2 S(q)$ 

Local monodisperse approximation (LMA):

 $I(q) \propto \langle |F(q)|^2 \rangle S(q)$ 







#### Supported nanoparticles: Pt deposit on MgO (001)





J. Olander et al. Phys. Rev. B 76 (2007) 075409.

#### Au clusters on a substrate



#### **GISAXS from a monolayer of core-shell gold-PNIPAM nanoparticles**



#### **High resolution GISAXS (GIUSAXS)**

#### Au linear assembly

AFM



GIUSAXS





#### Several possible geometries



Renaud G., Lazzari R., Leroy F., Surf. Sci Rep. 64 (2009), 255-380

#### **Buried interfaces: Pb clusters implanted in Si substrate**



 $D_{intercluster} = 9nm$ 

#### Scattering from facets: pyramid



#### Scattering from facets: Ge/Si(001) quantum dots



Bragg rod is proportional to the facet area

A.V. Zozulya, et al. Phys. Rev. B 78 (2008) 121304

#### In-situ GISAXS: study of LIPSS formation

Laser Induced Periodic Surface Structures (LIPSS)



• Roughness :

$$\sigma = \sqrt{\sigma_0^2 + \frac{kT}{2\pi\gamma} \ln\left(\frac{\lambda_l}{\lambda_s}\right)} \underset{\substack{\mathsf{I}_{\mathsf{I}} \text{ : longest wavelength}\\ \mathsf{I}_{\mathsf{s}} \text{ : shortest wavelength}}}{\underset{\substack{\mathsf{I}_{\mathsf{s}} \text{ : shortest wavelength}}}{\operatorname{shortest wavelength}}}$$

C. Bollinne, S. Cuenot, B. Nysten, and A.M. Jonas. Eur. Phys. J. E 12, 389–396 (2003). Z. Guosheng, P.M. Fauchet, A.E. Siegman. Phys. Rev. B, 5366 (1982)

• Interference of the incident and reflected light at the interface produces Ripples with a period L :

$$\Lambda = \frac{\lambda}{n \pm \sin \Theta_{\rm i}}$$

*I*: light wavelengthΘ: angle of incidence*n*: refraction index





T. Etzquerra (CSIC Madrid)

#### Set-up @ BM26, ESRF





Final height about 50nm, periodicity about 200 nm

GISAXS at the liquid-air interface



#### Colloidal CdSe/CdS nanorods



F. Pietra et al. Nano Letters 12 (2012) 5515-5523

#### **GIWAXS** – crystallinity and orientation



#### **GIWAXS** images

Maps of constant q<sub>r</sub> values in pixel space







 $q_r = \sqrt{q_x^2 + \sqrt{q_y^2}}$ 

 $q = \sqrt{q_r^2} + \sqrt{q_z^2}$ 

#### **GIWAXS (1) - Block-copolymer additives in OPVs**

#### P3HT:PCBM:P3HT-*b*-P4VP blends

• Why P3HT- b -P4VP:

non-covalent supramolecular interactions between P4VP and

- P3HT- b -P4VP is blended with P3HT:PCBM
- Inverted OPV devices
  - Glass/ITO/TiOx/active layer/MoO<sub>3</sub>/Ag
- Goal:
  - Exploit the PCBM P4VP interactions to trigger the morphology and improve the power conversion efficiency (PCE)



Prof. G. Hadziioannou (Uni Bordeaux)



#### **GIWAXS (1) - Block-copolymer additives in OPVs**

**P3HT- b - P4VP** as nanostructuring agent in the **P3HT: PCBM** blend\*



\* Adv. Mat. 2012, **24**, 2196-2201

Upon P3HT- *b* -P4VP incorporation:

- PCBM is less aggregated → more interfaces for exciton dissociation
  - Minor decrease in the crystallinity of P3HT
- Increase in the population of the face-on oriented P3HT crystallites

0

#### **GIWAXS (2)** – Ordering in organic thin film transistors



#### **GIWAXS (2) – Ordering in organic thin film transistors**







q<sub>y</sub> (nm⁻



#### Software for DWBA

IsGISAXS from R. Lazzary (Windows)
R. Lazzari, (U. Curie, Paris) J. Appl. Cryst. 35:406-21 (2002)

FitGISAXS from D. Babboneau (Igor Pro)
D. Babboneau (U. Poitiers) J. Appl. Cryst. 43 929-936 (2010)

• BornAgain (Python) C. Durniak et al, (Juelich)

#### **Books and references**



Jean Daillant Main Glowad Editors Increase antibility mericipation X-ray and Neutron Reflectivity Principles and Application

- 1. Als-Nielsen, Jens, and Des McMorrow. Elements of modern X-ray physics. John Wiley & Sons, (**2011**).
- 2. Daillant, J., and A. Gibaud. "X-ray and Neutron Reflectivity and Scattering." (1999).
- 3. Müller-Buschbaum, P. "Grazing incidence small-angle X-ray scattering: an advanced scattering technique for the investigation of nanostructured polymer films." *Analytical and bioanalytical chemistry* 376.1 (**2003**): 3-10.
- 4. Renaud, Gilles, Rémi Lazzari, and Frédéric Leroy. "Probing surface and interface morphology with grazing incidence small angle X-ray scattering." Surface Science Reports 64.8 (**2009**): 255-380.

#### Conclusions

- GISAXS and GIWAXS are powerful tools to obtain statistical structural information on sub-monolayers, monolayers and multilayers of soft and hard condensed matter
- GISAXS → 1-100 (1000) nm
- GIWAXS  $\rightarrow$  down to 0.1 nm
- Surface sensitivity
- High intensity allows for in-situ study

## Thank you for your attention!

### **Questions?**