BioSAS in Grenoble

What can be done and how to do it

Adam Round

Contents

- What can you learn from solution BioSAS
 - Basics of what can be obtained
 - Extending interpretation using complementary information
 - Examples
- How to collect data
 - Automation
 - Data collection and analysis
 - Feedback

Idealised Solution SAS Experiment

Neutron or X-ray source

What can we learn from solution SAXS

- Model independent parameters:
- Size! Rg, Dmax, Volume and MM estimates. Basic shape (Extended or Globular)
- Behaviour in different buffer conditions:
- To assess
 - effects of different buffer formulations
 - if interparticle effects or flexibility could be preventing crystallisation (find optimum conditions)
- Dynamic investigations under physiological conditions: Conformational changes with temperature, pH, binding etc.

What can be done if you know more!

Experimental X-ray scattering of the PYR1 protein in solution in the presence of 1mM (+) ABA.

Scattering curves for possible ensembles were calculated.

Only the curve for ensembles AB/CD produced a good fit to the experimental data (χ =0.72)

SAXS demonstrated that the AB ensemble corresponds to the biologically relevant form found under physiological conditions.

J Santiago et al. Nature 462, 665-668 (3 December 2009)

Functional study of Phosphoglycerate Kinase (PGK)

- Catalyses 7th step in Glycolosis
- It activates L-nucleoside analogue drugs in the treatment of AIDS and Hepititis
- Implicated in oncogenesis
- Drug target for obligate anaerobic pathogens

Phosphoglycerate Kinase (PGK)

Cliff, et al. (2010) J. Am. Chem. Soc., 132, 6507-6516

SAXS analysis of PGK: APO (open) from significantly more open

DEN refinement used to allow flexibility in the linkers to overcome clashes and provide an atomic model

SAXS analysis of PGK: Shows larger domain movement than expected

50° rotation from open to closed

SAXS analysis of PGK: Shows the domain movement during catalysis

Refinement of Rigid Domains

DEN refinement using SAXS and MX data allows visualization of domain movement

Adding Missing Linkers

Modelling of proteins from high resolution fragments/constructs replacing missing portions BUNCH or CORAL

High resolution structure from X-ray crystallography showed missing portions due to disorder

Questions:

is it hexamer or dodecamer in solution?

Where are the missing residues

Ab-initio Modelling

Modelling of proteins with no prior information Build complex models from uniform blocks

like LEGO but we use Dummy Atoms

Acts as a placeholder for, but does not resemble, a real atom

Occupies a known position in space

Has a known scattering pattern (Solvent or Particle)

Ab-initio Modelling

Modelling of proteins with no prior information Build complex models from uniform blocks

Must be Compact

Must NOT be disconnected

Must NOT be Loose

Ab-initio Modelling

With multiple data sets multiphase models can be produced

Points in the search grid can be assigned to Protein 1 Protein 2 or solvent

MONSA

SAXS analysis of yeast Arc1p-complex

P(r) Plot

- 1) MetRS:Arc1p:GluRS + tRNA
- 2) MetRS:Arc1p:GluRS
- 3) GluRS:Arc1p
- 4) MetRS:Arc1p
- 5) GluRS
- 6) MetRS
- 7) Arc1p

SAXS analysis of yeast Arc1p-complex

P(r) Plot

- 1) MetRS:Arc1p:GluRS + tRNA
- 2) MetRS:Arc1p:GluRS
- 3) GluRS:Arc1p
- 4) MetRS:Arc1p
- 5) GluRS
- 6) MetRS
- 7) Arc1p

SAXS analysis of yeast Arc1p-complex

SAXS analysis of yeast Arc1p-complex

Idealised Solution SAS Experiment

Neutron or X-ray source

Idealised Solution SAS Experiment

Neutron or X-ray source

Experimental Procedure

<u>Clean</u> Water Detergent Water Dry

Load New Sample/Buffer

Interlock Measure

SC development

Sample Volume Cleaning time Total cycle time

Reliability

Confidence

Sample Preparation

In solution SAXS we observe the Average

Average

Monodisperse

Mixture

Shape reconstruction requires: **MONODISPERSE!**

samples in solution

Pure protein (>90%)! In only 1 oligomeric state! NO aggregation! Free from interparticle effects!

Before going to the beamline users are encouraged to use:

HPLC/FPLC purification MALS/DLS Analytical ultra centrifugation

Online SEC GH3-12

open closed

 $\Delta R_{G} = 0.35 \text{ nm}$

Round A, Brown E, Kapp U, Westfall CS, Jez JM, Zubieta C. (2013) Acta D

Online SEC GH3-12

open closed

 $\Delta R_{G} = 0.35 \text{ nm}$

Aggregation! Standard experiment gives no answer

Round A, Brown E, Kapp U, Westfall CS, Jez JM, Zubieta C. (2013) Acta D

Current status of BM29: New online SEC

Malvern currently in place but will be moved to prep lab

Shimadzu installed over Easter and is already available to users

Online SEC in ISPyB

Online SEC

Biophysical characterization

Online SEC

ATP/AMP: closed state APO: flexibility

Round A, Brown E, Kapp U, Westfall CS, Jez JM, Zubieta C. (2013) Acta D

Current status of data collection:

Temperature

- Data acquisition between 4 and 60 C
- SEC operation at 4 or 20 degrees C

Exposure Time

- Standard 1 FPS (10 frames for Static)
 - S200 column ~1 hour (3600 frames)
 - Increase column ~10 mins (600 frames)

Sample Volume

- Minimum recommended 30 µL per measurement
 - Approx. 5 mg/mL
 - 100 μL stock recommended
 - for static and SEC

Automated valve

To switch between SEC and Static modes

Gives users control Safe and reliable switching Maximises efficiency cleaning between SEC runs

SC compatible Microfluidics: First results

Proof of Principle achieved

Experimental preparation and efficient use of beamtime facilitated through ISPyB

Improved feedback for experimental preparation

OSAXS Experime	ent Design	er											
Define Measur Define only buffers' m	rements y the macr easureme	omolecul ent neede	e's m d for	easuremen substractio	nt you want to m on automatical	iake. This w ly.	izard will a	dd					
Single Measu	rement	Concent	tratio	n Series									
Macromolecul How many un Exposure. Ter	les: PGK know con np.: 4	centratio	✓ ns do	you have?:	Buffer: : Vol. To Load (АМР 3 µl): 50	×]	Tra	unsmissio	on 100	~	
Wait Time:	0		•		Viscosity:	low Add	~		(%) Flo). w:			
Measurements	5												
	Spe	ecimen					Paramete	rs					
Macromo.	Conc	. (mg/ml)		Buffer	Exp. Temp.	Vol. Load	Trans.	Wait T.	Flow	Viscosity	Comments		
PGK	1.00	00		AMP	4.00 c	50.00 μι	100 %		yes	low			REMOVE
PGK	2.00	00		AMP	4 00 c	50 00 ut	100 %		ves	low			BEHOVE

50.00 µl 100 %

yes

low

4.00 c

3.000

AMP

PGK

REMOVE

Improved feedback for experimental preparation

IIOSAXS Experiment Designer

×

Define Measurements

Define only the macromolecule's measurement you want to make. This wizard will add **buffers' measurement needed for substraction automatically.**

Single Measurem	ent Concentration Series				
Macromolecules:	PGK 👻	Buffer:	ATP 💌		
How many unknow	v concentrations do you have?	:	3		
Exposure. Temp.:	4	Vol. To Load (µl):	50	Transmission (%):	100
Wait Time:	0	Viscosity:	Iow 🗸	Flow:	
			Add		

Specimen Parameters Comments Macromo. Conc. (mg/ml) Buffer Exp. Temp. Vol. Load Trans. Wait T. Flow Viscosity	
Macromo. Conc. (mg/ml) Buffer Exp. Temp. Vol. Load Trans. Wait T. Flow Viscosity	
PGK 1.000 AMP 4.00 c 50.00 μl 100 % yes low	REMOVE
PGK 2.000 AMP 4.00 c 50.00 μl 100 % yes low	REMOVE
PGK 3.000 AMP 4.00 c 50.00 μl 100 % yes low	REMOVE
PGK 1.000 ATP 4.00 c 50.00 μl 100 % yes low	REMOVE
PGK 2.000 ATP 4.00 c 50.00 μl 100 % yes low	REMOVE
PGK 3.000 ATP 4.00 c 50.00 μl 100 % yes low	REMOVE

Collapse buffer Specimen Collapse buffer Collapse buffer Collapse buffer Collapse buffer Macromo. Conc. (mg/m) Buffer Exp. Temp. Vol. Load Trans. Wait T. Flow Viscosity Time Comments Image: Specimen 0.03 20.00 c 100.0 100 % yes Low DOHE 66.47.07 mb buffer Image: Specimen 0.03 20.00 c 100.0 100 % yes Low DOHE 66.48.23 pm buffer Image: Specimen 0.03 20.00 c 100.0 100 % yes Low DOHE 06.49.41 pm buffer Image: Specimen 0.03 20.00 c 100.0 100 % yes Low DOHE 06.52.59 pm buffer Image: Specimen 0.33 20.00 c 100.0 100 % yes Low DOHE 0652.40 pm buffer Image: Specimen 0.53 20.00 c 100.0 100	Overv	iew	M	leas	uren	nent	s	An	alysi	s	10	View	er																						
Image: Speciment Speciment Exp. Temp. Vol. Load Trans. Wat T. Flow Viscosity Status Time Comments Image: Macromo. Conc. (mg/m) Butfer Exp. Temp. Vol. Load Trans. Wat T. Flow Viscosity OHE 06149 23 pm Littler Image: Macromo. D33 20.00 c 100.0 100 % yes Low DOHE 06149 23 pm Littler Image: Macromo. D33 20.00 c 100.0 100 % yes Low DOHE 06149 23 pm Littler Distler Image: Macromo. 06149 23 pm Littler Distler Image: Macromo. 06149 23 pm Littler Distler Image: Macromo. Distler Image: Macromo. Distler Distler Image: Macromo. Distler Distler																																C	Collap	se bu	uffers
Macromo. Conc. (mg/mt) Buffer Exp. Temp. Vol. Load Trans. Wat T. Flow Viscoss Status Itme Continents ta4EFD33 14.000 D33 20.00 c 100 % yes Low D0HE 0647.07 pm buffer ta4EFD33 14.000 D33 20.00 c 100 % yes Low D0HE 0649.41 pm buffer ta4EFD33 7.000 D33 20.00 c 100 % yes Low D0HE 0649.41 pm buffer ta4EFD33 7.000 D33 20.00 c 100 % yes Low D0HE 065954 pm [31ahef d33 truncation] ta4EFD33 3.500 D33 20.00 c 100 % yes Low D0HE 0659.54 pm [4]tahef d33 truncation] ta4EFD33 1.250 D33 20.00 c 100 % yes Low D0HE 0659.54 pm [4]tahef d33 truncation] ta4EFD33					ę	Speci	imen											Para	amete	ers															
Image: marker D33 20.00 c 100 mm 100 mm yes Low D0HE 0647:07 pm jutfer Image: marker D33 14.000 D33 20.00 c 150 mm 100 mm yes Low D0HE 0649:12 pm [1]tabel d33 truncation Image: marker D33 7.000 D33 20.00 c 100 mm yes Low D0HE 0649:12 pm 101tfer 100 mm yes Low D0HE 0649:12 pm 101tfer 100 mm yes Low D0HE 0650:54 pm [2]tabel d33 truncation Image: marker D33 3,500 Image: marker D33 20.00 c 100 mm yes Low D0HE 0652:9 pm Ig1tabel d33 truncation Image: marker D33 3,500 Image: marker D33 20.00 c 100 mm 100 mm yes Low D0HE 0655:62 pm Ig1tabel d33 truncation Image: marker D33 1,250 Image: marker D33 20.00 c 100 mm 100 mm yes Low D0HE 0655:62 pm Ig1tabel d33 truncation Image: marker D33 0,610 Image: marker D33 20.00 c 100 mm		Macr	omo.		Co	nc. (I	mg/m	nl)		Buf	fer		Exp.	Temp	. V	ol. Lo	ad	Trans	s.	Wa	itΤ.	Flov	N	Viscosi	iy S	tatus	5 1	ime			Col	nmer	nts		
Image: tableFD33 14,000 D33 20.00 c 150.0 100 % yes Low DONE 0648.23 pm [1] tabef d33 runcation Image: tableFD33 7,000 D33 20.00 c 100.0 100 % yes Low DONE 0648.23 pm [2] tabef d33 runcation Image: tableFD33 7,000 D33 20.00 c 100.0 100 % yes Low DONE 065.95 pm buffer Image: tableFD33 3,500 D33 20.00 c 100.0 100 % yes Low DONE 0652.95 pm buffer Image: tableFD33 3,500 D33 20.00 c 100.0 100 % yes Low DONE 0654.40 pm buffer Image: tableFD33 1,250 D33 20.00 c 100.0 100 % yes Low DONE 0655.56 pm [4] tabef d33 runcation Image: tableFD33 0,610 D33 20.00 c 100.0 100 % yes Low DONE 0655.56 pm [5] tabef d33 runcation Image: tableFD33 0,610 D33 20.00 c <										D33	3		20.0	0 с	1	.00.0		100	96			yes		Low	D	ONE	0	6:47	:07 p	om	but	fer			
Image: Control in the term of term of the term of term		taHE	FD33		1,	4.00	00			D33	3		20.0	0 с	1	.50.0		100	96			yes		Low	D	ONE	0	6:48	:23 p	om	[1]	tahet	f d33	trunc	ation
Image: tallEFD33 7.000 Image: D33 20.00 c 90.00 µl 100 % yes Low D0HE 0650.54 µm [2] tallef d33 truncation Image: Tallef D33 3.500 Image: Tallef D33 20.00 c 100 0, 100 % yes Low D0HE 0650.54 µm Lighter d33 truncation Image: Tallef D33 3.500 Image: Tallef D33 20.00 c 90.00 µl 100 % yes Low D0HE 0653.25 µm [3] tallef d33 truncation Image: Tallef D33 1.250 Image: Tallef D33 20.00 c 90.00 µl 100 % yes Low D0HE 0655.56 µm [4] tallef d33 truncation Image: Tallef D33 1.250 Image: Tallef D33 20.00 c 100 0, 100 % yes Low D0HE 0655.56 µm [4] tallef d33 truncation Image: Tallef D33 0.610 Image: Tallef D33 20.00 c 100 0, 100 % yes Low D0HE 0655.56 µm [4] tallef d33 truncation Image: Tallef D33 0.610 Image: Tallef D33 20.00 c 100 0, 100 % yes Low D0HE 0655.56 µm										D33	3		20.0	0 с	1	.00.0		100	96			yes		Low	D	ONE	0	6:49	:41 p	om	but	fer			
Image: mark to make the mark to mark tothand to mark to mark to mark to mark to mark to mark t		taHE	FD33		7.	000)			D33	3		20.0	0 с	9	0.00	μ	100	96			yes		Low	D	ONE	0	6:50	:54 p	om	[2]	tahet	f d33	trunc	ation
Image: table FD33 3,500 Image: table FD33 20,00 90,00 µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµ										D33	3		20.0	0 с	1	.00.0		100	96			yes		Low	D	ONE	0	6:52	:09 p	om	but	fer			
Image: Construct of the c		taHE	FD33		З.	500)			D33	3		20.0	0 с	g	0.00	μ	100	96			yes		Low	D	ONE	0	6:53	:25 p	om	[3]	tahei	f d33	trunc	ation
tableFD33 1.250 D33 20.00 c 90.00 µl 100 % yes Low D0HE 06:55:56 pm [4] tablef d33 truncation tableFD33 0.610 D33 20.00 c 100.0 100 % yes Low D0HE 06:55:56 pm [5] tablef d33 truncation tableFD33 0.610 D33 20.00 c 100.0 100 % yes Low D0HE 06:52:28 pm [5] tablef d33 truncation C D33 20.00 c 100.0 100 % yes Low D0HE 06:59:43 pm buffer C D33 20.00 c 100.0 100 % yes Low D0HE 06:59:43 pm buffer C Participan D33 20.00 c 100.0 100 % yes Low D0HE 06:59:43 pm buffer C Participan D33 20.00 c 0.0.0 100 % yes Low D0HE 06:59:43 pm buffer 1 Participan D3 2-4 x (8 + 3) Block A 0 0 0 0<0 0 0 0<0 0 0 0<0 0 0<0 0 0										D33	3		20.0	0 с	1	.00.0		100	96			yes		Low	D	ONE	0	6:54	:40 p	om	but	fer			
Image: Control (Control (Contro) (Control (Control (Contro) (taHE	FD33		1.	250)			D33	3		20.0	0 с	g	0.00	μΙ	100	96			yes		Low	D	ONE	0	6:55	:56 p	om	[4]	tahei	f d33	trund	ation
Image: HerD33 0.610 D33 20.00 c 90.00 µl 100 % yes Low DONE 06.58:28 pm [5] tahef d33 truncation Image: Constraint of the table of table o										D33	3		20.0	0 с	1	.00.0		100	96			yes		Low	D	ONE	0	6:57	':11 p	om	but	fer			
Image: Control in the part of the p		taHE	FD33		0.	610)			D33	3		20.0	0 с	9	0.00	μΙ	100	96			yes		Low	D	ONE	0	6:58	:28 p	om	[5]	tahei	f d33	trunc	ation
I-Deep Well I-OPE										D33	3		20.0	0 с	1	.00.0		100	96			yes		Low	D	ONE	0	6:59	:43 p	om	but	fer			
I Deep Well I O O																																			
Pready 1 - Dep Well 2 - 4 x (8 + 3) Block 3 - 9 C Well plate A 0 </th <th></th>																																			
1. Deep Well 2. 4 x (8 + 3) Block 3. 96 Well plate A O	٢	Ready	/																																
A O	1 - De	ep W	ell										2-4×	(8+	3)B	lock								3 - 96 W	/ell r	late									
0 0	A 0	0	0	0	0	0	0	0	0	0	0	0	A 0	0	0	0	0	0	0	0	0	0	0	A O	0	0	0	0	0	0	0	0	0	0	0
0 0	вО	0	0	0	0	0	0	0	0	0	0	0												вО	0	0	0	0	0	0	0	0	0	0	0
0 0	° 0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	с О -	0	0	0	0	0	0	0	0	0	0	0
1 1	D 0	0	0	0	0	0	0	0	0	0	0	0		Ũ	Ũ	Ũ	Ũ	Ũ	Ũ	Ũ	Ŭ	0	Ŭ	DO	0	0	0	0	0	0	0	0	0	0	0
0 0	вO	0	0	0	0	0	0	0	0	0	0	0		_	_	_	_	-	_	_	~	~	~	ЕO	0	0	0	0	0	0	0	0	0	0	0
0 0	F O	0	0	0	0	0	0	0	0	0	0	0	c O	0	0	0	0	0	0	0	0	0	0	FО	0	0	0	0	0	0	0	0	0	0	0
	в О	0	0	0	0	0	0	0	0	0	0	0												вО	0	0	0	0	0	0	0	0	0	0	0
	нQ	Q	Q	Q	Q	Q	ρ	Q	Q	Ö	Ö	ō	D P	2	9	9	<mark>.</mark>	o	ρ	P	9	Q	Õ	нQ	Q	Q	Q	Q	Q	ρ	ρ	Q	Q	Ö	Ō

Overview N	Measurements	Analysis 1D Viewe	r									
Maaramalaaula	Concentration	Septtering			Guinie	r			Gnom			Porod
Macromolecule	concentration	scattering	Frames (Averagedrio(a))	Rg (nm)	Points	Quality (%)	l(0)	Rg (nm)	Total	Dmax (nm)	Volume (nm ³)	MM (kD) Vol. est
•												
taHEFD33	14.00 mg/ml		D33 (10 of 10)	4.75 nm	19 - 37 (18)	83.95	90.78	4.94 nm	0.51	24.09	154.27	77.1 - 102.8
			taHEFD33 (10 of 10)				±0.88492					
			D33 (1 of 10)									
		4111grand										
taHEFD33	7.00 mg/ml		D33 (1 of 10)	3.97 nm	12 - 42 (30)	92.14	71.21 ±4.1859e-2	3.91 nm	0.44	13.90	112.54	56.3 - 75.0
			taHEFD33 (5 of 10)									
		1	033 (50110)									
taHEFD33	3.50 mg/ml	- Million - Mill	D33 (5 of 10)	3.37 nm	50 - 77 (27)	72.77	59.53	3.44 nm	0.53	11.81	95.25	47.6 - 63.5
	_		taHEFD33 (10 of 10)				±6.55654					
			D33 (10 of 10)									
taHEFD33	1.25 mg/ml		D33 (10 of 10)	3.23 nm	40 - 82 (42)	78.58	78.16	3.26 nm	0.59	10.81	90.31	45.2 - 60.2
			taHEFD33 (10 of 10)				10.023440-2					
		1.1.1	D33 (10 of 10)									
+=UEED22	0.61	· · · · · · · · · · · ·		2.16	27 79 (51)	86.16	70.00	2.20	0.75	11.06	04.05	42.2 56.2
Ianeruss	U.DI mg/ml		D33 (10 of 10)	3.10 nm	21-10(21)	00.10	78.80 ±9.98563	3.20 nm	0.75	11.00	04.30	42.2 - 20.2
		. Malaria	D33 (10 of 10)									

1D Scattering Curves Visualizer × Criteria ~ List Ξ 7 File 🔺 6 taHEFD33_044_sub.dat taHEFD33_044_sub.out 5 taHEFD33_045_00001.dat taHEFD33_045_00002.dat taHEFD33_045_00003.dat 4 taHEFD33_045_00004.dat taHEFD33_045_00005.dat 3 taHEFD33_045_00006.dat 2 taHEFD33 045 00007.dat taHEFD33_045_00008.dat taHEFD33_045_00009.dat 1 taHEFD33_045_00010.dat March taHEFD33_045_ave.dat 0 taHEFD33_045_ave.dat taHEFD33_046_00001.dat -1 taHEFD33_046_00002.dat taHEFD33_046_00003.dat -2 taHEFD33_046_00004.dat taHEFD33_046_00005.dat -3 taHEFD33_046_00006.dat ⊡ -4 Macromolecules + Tree Ð -5 Save Cancel

USR

Automated processing is being extended:

Additional information such as PDB's of possible conformations

Created by CRYSOL v. 28 on 23-Dec-2014 11:06:02

Batch: crysol -err -cst /tmp/biosaxsworkflows/2014-12-23_11-06-01/pdb3n9g.pdb /data/pyarch/bm29/opd29/2604/1d/Data_050_sub.dat Data file name: /data/pyarch/bm29/opd29/2604/1d/Data_050_sub.dat Model: /tmp/biosaxsworkflow Rg: 24.90 Run: 00 Chi: 14.01

Automated processing is being extended:

Additional information such as PDB's of possible conformations

Elektronik Malaki Australi Vice State Sta			
ILINE HELP: To be updated			
Abinitio	Apriori	Aligned	
BSA_0008-1-1.pdb	dimer.pdb	BSA_0008-1-1_dimer.pdb	
3SA_0008-1-1.pdb	monomer.pdb	BSA_0008-1-1_monomer.pdb	

The black box should not be scary It should be reasuring that it is accessible

Home source

The black box should not be scary It should be reasuring that it is accessible

Automated data acquisition

With feedback

Acknowledgments

