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Outline 

• Introduction:  
 Nanoscale structures in metals 
 
• Experimental Methods: 
 Summary SAS  
 When to use SAS 
 Comparison SANS & SAXS 
  
• Examples: 
 SANS on precipitates 
 SAXS on precipitates 
 Small-angle diffraction with SANS 
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Improved functionality by 
nanostructuring materials 

Precipitation hardening Al-Cu (4 at.%) 

Murray,  
Int. Metals Rev. 30 (1985) 5. 

Strength during aging 
precipitation 
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Nucleation: formation of new phase particles  
- nm size clusters 
- occurs on short time scales 
- positioned within bulk materials 
- strongly dependent on interface/defect properties  
 
Growth: increase in size of nucleated grain 
- controlled by diffusion of alloying elements and/or heat 
- interaction between neighboring growing particles 
- dependent on microstructure of the parent phase 

Structure evolution during phase 
transformations in structural materials 

Nucleus hard-sphere colloid 

Need for time-dependent in-situ measurements 
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Nanoscale probes 

Small-Angle X-ray Scattering 

Transmission Electron Microscopy Atom probe Tomography 

Small-Angle Neutron Scattering 

Hutchinson et al., Acta Materialia 74 (2014) 96. 
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Small-Angle X-ray Scattering 
+ Non destructive 
+ In situ / time resolved 
+ Contrast near absorption edge 
+ High flux 
-  Sample thickness heavy elements 
-  No spatial information 
-  Indirect chemical information 

Transmission Electron Microscopy 
+ Up to atomic spatial resolution 
+ Can provide chemical information 
-  Destructive 
-  Probes limited volume 

Atom probe Tomography 
+ Near atomic spatial resolution 
+ Precise chemical information 
-  Destructive 
-  Probes limited volume 

Small-Angle Neutron Scattering 
+ Non destructive 
+ In situ / time resolved 
+ Magnetic information 
+ Can probe a large volume 
-  Flux limited 
-  No spatial information 
-  Indirect chemical information 

Combining techniques will provide complementary information 

Nanoscale probes 
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Small Angle Scattering:  
Elastic Scattering 

= + ∆

+

= −

=  

Momentum conservation:

out in

out i

o

n

ut inQ k

p p p
Q

k

k k
= + ∆

Energy conservati : on

E E Eout in
2 2

2

2 2

=

=

= → =

= → =

= =

Neutrons: 

X-rays:     

E

k

m m
c c

π
λ

in

out in
out in

out in out i

i

n

out n

p p
p p

p p

k k

p p

k  = wave vector 
Q = wave vector transfer 
λ  = wavelength 
2θ = scattering angle 

inp

outp

2θ

∆p

n, X 

n, X 

4 sin( )=Q π θ
λ

Wave vector transfer : 

ink

outk
θ Q
θ



8 SyNeW School 2 June 2015: Small-Angle Scattering 

Interference pattern:  
Fourier transform of object 
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Scattered Intensity: 
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Contrast :

Orientation-averaged square of formfactor : 

Particle volume :
Number distribution of size particles :

Assumptions :
 dilute limit (low volume fraction of particles within the matrix)
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Contrast X-rays: 

( ) ( )22  particle matrixρ ρ ρ∆ = −

Sensitive to variations in:  
- Chemical composition 
- Density  

matrix 

particle 

( )ρ r
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Contrast Neutrons: 

Nuclear contrast: 
( ) ( )22

0 with 
i i

particle matrix c
i

N bρ ρ ρ ρ∆ = − = ∑
N0 = number density 
bc = scattering length 
ρ = scattering length density 

matrix 

particle 
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Considerations SAXS on metals 

Anomalous SAXS: 
Close to an absorption edge X-ray scattering depends on the energy:  
 
 
This gives additional contrast and can provide additional  
chemical information. 

0 ( ) '( ) ''( )f f f E if E= + +Q

Sample transmission: 
The transmission X-rays with E<30 keV leads to restrictions in the  
allowed sample thickness (especially for heavy elements). 

Additional scattering for crystalline materials (metals): 
X-rays with 10-30 keV have a wavelength of λ = 0.4-1.2 Å.  
This allows for a possible diffraction signal. 
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Considerations SANS on metals 

Contrast: 
As the coherent scattering length strongly varies from element  
to element the contrast strongly depends on the composition. 

Sample transmission: 
The large penetrating power of neutrons generally allow a  
large sample thickness (and sample volume to be probed). 

No additional diffraction signal: 
In SANS neutrons have a wavelength of λ = 6-10 Å.  
This generally does not allow Bragg scattering. 

Magnetic SANS: 
For magnetic materials the particles have both nuclear and  
magnetic contrast that probe the sample particle size distribution. 
The ratio between them may provide chemical information. 
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Data analysis 

Data reduction: 
 
Transform the raw intensity data on the 2D detector I(x,y) into  
instrument independent 1D SAS data of (dΣ/dΩ)(Q) versus Q. 

Model fitting: (SASfit, Grasp, GNOM, …) 
 
Construct a model of the scattering objects and obtain the  
relevant model parameters by fitting.  
Additional information from other methods (TEM, Atom probe)  
is generally very useful to obtain reliable results. 
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Example:  
SANS on Cu precipitation  
in deformed Fe-Cu alloys 
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scattering length density 

Magnetic scattering 
from                only! 

I(Q⊥) 

I(Q||) 

Sample 
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2m, B=0 6m, B=0 18m, B=0 

2m, B=1.1 T 6m, B=1.1 T 18m, B=1.1 T 

SANS 2D Patterns with & without Magnetic Field  

B B B 
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TEM after 12 h of aging at 550 oC 
0% deformation 

8% deformation 

He et al.,  
Phys. Rev. B 82 (2010) 174111. 
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Phase fraction of Cu precipitates 

Invariant: 
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Profile fitting of the SANS curve 
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Time-resolved SANS measurements Fe-Cu 
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Time-resolved SANS measurements Fe-Cu 
Structure evolution Cu precipitates during growth:  
bcc → 9R → 3R → fcc 
bcc :   R < 5 nm 
9R :  5 nm < R < 16 nm 
3R & fcc : R > 16 nm 
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Time-resolved SANS measurements Fe-Cu 
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Time-resolved ASAXS measurements  
undeformed Fe-Cu (8x enhanced contrast) 

E = 7.106 keV 
L = 20-30 μm 

Perez et al.,  
Philos. Mag. 85 (2005) 2197. 
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Example:  
SANS on Au precipitation  
in deformed Fe-Au alloys 



27 SyNeW School 2 June 2015: Small-Angle Scattering 

Nuclear 
SANS 

Magnetic 
SANS 

Initial state After 12 h at 550 oC 

Au precipitation in deformed Fe-Au (1 at.%) 

Zhang et al.,  
Acta Mater. 61 (2013) 7009. 

grain boundaries 
Q -4 

precipitates 
Q -2 

incoherent incoherent 
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TEM of Au precipitates in Fe-Au after aging 

Zhang et al.,  
Acta Mater. 61 (2013) 7009. 

Fe-Au 0%, Pre-strain 

Fe-Au 24%, Pre-strain 

 Undeformed: only along grain boundaries 
 Deformed: 
        1. along grain boundaries 
        2. disk-like, closely connected to the dislocations  

Zhang et al., Acta Mater. 61 (2013), p7009.  
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Disk-shaped precipitates 
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Phase fraction of Au precipitates 

Invariant: 

L 
2R 
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Specific surface (S/V) circular caps Au precipitates 
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Profile fitting of the SANS curve 
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Profile fitting of the SANS curve 

SANS TEM 

12 h at 550 oC 
24% deformation 

12 h at 550 oC 
24% deformation 

2 / 8R Lε = ≈
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Au segregation at (sub)grain boundaries 
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Example:  
SAXS on (Fe,Cr)7C3 carbides and 
dislocation structures in low-Cr steel 
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SAXS pattern: 

Heat treatment: 

Gözde Dere et al., 
J. Appl. Cryst. 46 (2013) 181. 

Isotropic → precipitate 
Streaks   → dislocations 

E = 17 keV 
λ = 0.729 Å 
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Gözde Dere et al., 
J. Appl. Cryst. 46 (2013) 181. 

Isotropic SAXS profile 

Lognormal size distribution: 

TEM 
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Streaks in SAXS profiles  
Small-angle scattering from dislocations 

Edge dislocation Strain field 
(= Density variation) 

For dislocation walls (Long & Levine, Acta Cryst. A 61 (2005) 557): 

( ) ( )2 , ,t t w wI A cL F Q L F Q L= +  

Strongly anisotropic scattering along (Qw) and perpendicular (Qt) to the wall. 

Dislocation wall 
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Gözde Dere et al., 
J. Appl. Cryst. 46 (2013) 181. 

Streaks in SAXS profiles  
Correlation to simultaneous X-ray Diffraction 

The data provide direct information that links:  
the matrix phase structure, dislocations and nucleated precipitate. 
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Gözde Dere et al., 
J. Appl. Cryst. 46 (2013) 181. 

Streaks in SAXS profiles  
Correlation to simultaneous X-ray Diffraction 
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Example:  
SANS on the magnetic flux-line lattice  
of superconducting UPt3 
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d10 

d10 

a 

Magnetic Flux-Line Lattice 

S 

S = Φ0/B = (√3/2) a2 = (2/√3) d10
2  

d10 = √(√3/2)(Φ0/B) = 423.4 Å/√B [T]  

Flux quantum: Φ0 = h/2e = 2.07×10-15 Tm2 
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Huxley et al., Nature 406 (2000) 160. 

Unconventional superconductivity in UPt3 

(B||c) 

superconducting 
phase B 

superconducting 
phase C 

superconducting 
phase A 
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Flux-Line Lattice UPt3 (B||c) 

Normal 
State 

Zero-Field 
Cooled 

Field 
Cooled 

TQ =  
475 mK 

Huxley et al., Nature 406 (2000) 160. 
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TQ 
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Tc
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Tc
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Further reading SAXS/SANS on metals: 

P. Fratzl,  Small-angle scattering in materials science – a short review of 
 applications in alloys, ceramics and composite materials,  
 J. Appl. Cryst. 36 (2003) 397-404. 
 
G. Kostorz, Small-Angle Scattering Studies of Phase Separation and Defects  
 in Inorganic Materials, J. Appl. Cryst. 24 (1991) 444-456. 
 
F. De Geuser, A. Deschamps, Precipitate characterisation in metallic systems by 
 small-angle X-ray or neutron scattering, 
 C. R. Physique 13 (2012) 246–256. 
 
A. Deschamps, On the validity of simple precipitate size measurements by small-
 angle scattering in metallic systems, 
 J. Appl. Cryst. 44 (2011) 343–352. 
 
E. Eidenberger et al., Application of Photons and Neutrons for the Characterization 
 and Development of Advanced Steels, 
 Adv. Eng. Mater. 13 (2011) 664-673. 
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SANS instrument under development in Delft 
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