Transforming Nonlocality into a Frequency Dependence: A Shortcut to Spectroscopy

Matteo Gatti,1,2 Valerio Olevano,3,2 Lucia Reining,1,2 and Ilya V. Tokatly4
1Laboratoire des Solides Irradiés, École Polytechnique, CNRS-CEA/DSM, F-91128 Palaiseau, France
2European Theoretical Spectroscopy Facility (ETSF)
3Institut Néel, CNRS, F-38042 Grenoble, France
4Lehrstuhl für Theoretische Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstrasse 7/B2, D-91054 Erlangen, Germany

 DOI: 10.1103/PhysRevLett.99.057401 PACS numbers: 78.20.Bh, 71.10.−w, 71.15.Qe

The calculation of electronic excitations and spectra is one of the major challenges of today’s condensed matter physics. In fact, while density-functional theory (DFT), especially with simple and efficient approximations like the local-density approximation (LDA) [1], has led to a breakthrough concerning the simulation of ground-state properties, the determination of electronic excited states is still cumbersome. The description of spectroscopy calls for the definition of suitable fundamental quantities (beyond the static ground-state density DFT is built on), and the derivation of new approximations. For neutral excitations (as measured, e.g., in absorption or electron energy-loss spectroscopies) one can in principle work with the time-dependent density, and try to approximate time-dependent DFT (TDDFT) [2], for example, in the adiabatic LDA (TDLDA). Also many-body perturbation theory (MBPT) approaches [3], like the GW approximation [4] for the one-particle Green’s function or the Bethe-Salpeter equation (BSE) for the determination of neutral excitations, are today standard methods for first-principles calculations of electronic excitations [5]. One of the main reasons for the success of MBPT is the intuitive physical picture that allows one to find working strategies and approximations. Therefore, Green’s functions approaches are often used even when one could in principle resort to simpler methods, in particular, density-functional based ones—for example, one uses BSE when TDLDA breaks down. It is hence quite logical to try to link both frameworks [6], and derive better approximations for the simpler (e.g., density-functional) approaches from the working approximations of the more complex (e.g., MBPT) ones.

In the present Letter we propose a general framework for the definition of reduced potentials or kernels, designed for obtaining certain quantities that can otherwise be calculated from some N-particle Green’s function. In particular, we explore the question of a local and frequency dependent real potential that allows one to find the correct density and trace of the one-particle spectral function and therefore to access direct and inverse photoemission (including the band gap). We present model results of this new approach for metals and insulators, and discuss the relation to dynamical mean-field theory (DMFT) [7]. Of particular interest is the conversion of nonlocality into frequency dependence that one encounters when an effective potential or kernel with a reduced number of spatial degrees of freedom is used to describe excitations.

In this general scheme we suppose that one wants to calculate the quantity T that is a part of the information carried by the N-particle Green’s function G. We symbolically express this relation as $T = p(G)$. In the following we will specify the formula for the one-particle G, whereas the completely analogous case of two-particle Green’s functions will be briefly discussed at the end. As a well-known example we take the electronic density $T = \rho$ for which the “part” to be taken is the diagonal of the one-particle G: $\rho(r) = -i\langle G(r, t, t') \rangle$. We then introduce another Green’s function G_T which has the part $p\{G_T\}$ in common with G: $T = p\{G_T\}$. We also suppose that G_T is associated to an effective potential V_T according to $G_T = (\omega - H_0 - V_T)^{-1}$, where H_0 is the Hartree part of the Hamiltonian [8]. The full Green’s function G and the new G_T are linked by a Dyson equation:

$$G = G_T + G_T(\Sigma - V_T)G.$$ \hspace{1cm} (1)

We now take the part of interest $p\{\}$ of this Dyson equation. This yields the condition

$$p\{G_T(\Sigma - V_T)G\} = 0. \hspace{1cm} (2)$$

The aim is now to make an ansatz for V_T with a simpler structure than Σ, and for which (2) can be solved. For the example where T is the static density ρ, a static and local potential can do the job. In fact in this example V_T is the exchange-correlation potential $V_{xc}(r)$, G_T is the Kohn-Sham Green’s function G_{KS}, and (2) is a well-known result, derived by Sham and Schlüter in [9]. It has subsequently been extended to time-dependent external potentials [10], and employed in many different contexts (see, e.g.,
The Sham-Schlüter equation (SSE) is still implicit since it is self-consistent in \(V_{\text{xc}} \) and \(G_{\text{KS}} \). Most often it is linearized setting \(G = G_{\text{KS}} \) everywhere, including in the construction of \(\Sigma \). This so-called linearized Sham-Schlüter equation, that can also be derived using a variational principle \([13,14]\), is the central equation of the optimized effective potential (OEP) method \([15]\). In particular, if one uses for \(\Sigma \) the exchange-only approximation \(\Sigma = \Sigma_{\text{xc}} \), where \(\Sigma_{\text{xc}} = iG_{\text{KS}} v \) (\(v \) is the bare Coulomb interaction), one obtains the so-called exact-exchange approximation to \(V_{\text{xc}} \) \([16]\). By construction one obtains in this way a good description of the density, whereas there is no reason for other features of the Green’s function, in particular, the band gap, to be correct. In our more general scheme one can easily go beyond the case of solely the density. According to the choice of \(p[\cdot] \), the ansatz for \(V_T \) has then to be modified. Below we will first explore the problem of electron addition and removal.

Electronic structure, defined as electron addition and removal energies, is measured by experiments like direct or inverse photoemission. To first approximation \([5]\) these experiments measure the trace of the spectral function \(A(r_1, r_2, \omega) = \frac{1}{\pi} \text{Im} G(r_1, r_2, \omega) \). In other words, for the interpretation of photoemission spectra one does not need the knowledge of the whole Green’s function \(G \), but just the imaginary part of its trace over spatial coordinates together with its full frequency dependence. We will hence look for a potential that is simpler than the full self-energy but yields the correct trace of the spectral function. It is reasonable to add the condition that also the density should be correct, which means that the diagonal in real space, and not only its integral, is fixed. Following the general scheme, we introduce a new Green’s function \(G_{\text{SF}} = (\omega - H_0 - V_{\text{SF}})^{-1} \) stemming from a potential \(V_{\text{SF}} \) such that \(\text{Im} G_{\text{SF}}(r_1, r_2, \omega) = \text{Im} G(r_1, r_2, \omega) \). What degrees of freedom are needed in \(V_{\text{SF}} \)? A natural assumption is that \(V_{\text{SF}} \) should be local in space, but frequency dependent \([17,18]\). It is also possible to choose \(V_{\text{SF}} \) to be real. With this ansatz Eq. (2) yields

\[
V_{\text{SF}}(r_1, \omega) = \int dr_2 dr_3 dr_4 \xi^{-1}(r_1, r_4, \omega) \times \text{Im}[G_{\text{SF}}(r_4, r_2, \omega) \Sigma(r_2, r_3, \omega) G(r_3, r_4, \omega)],
\]

where \(\xi(r_1, r_2, \omega) = \text{Im}[G_{\text{SF}}(r_1, r_2, \omega) G(r_2, r_1, \omega)] \) \([19]\). Equation (3) shows that \(V_{\text{SF}} \) should indeed be frequency dependent unless \(\Sigma \) is static and local (in that case the \(\omega \)-dependent terms cancel trivially). Thus, in general a local static (KS) potential will not be able to reproduce the spectral function, whereas \(V_{\text{SF}}(r, \omega) \) is the local potential that will yield the correct band gap and the correct density \(p(r) \) of the system.

At this point it is interesting to compare our construction with the approach of the spectral density-functional theory (SDFT) \([20]\), where the key variable is the short-range part of the Green’s function: \(G_{\text{loc}}(r, r', \omega) = G(r, r', \omega) \times \Theta(\Omega_{\text{loc}}) \), where \(\Theta(\Omega_{\text{loc}}) \) is 1 when \(r \) is in the unit cell and \(r' \) inside a volume \(\Omega_{\text{loc}} \), and 0 otherwise (see Fig. 1 of Ref. \([20]\)). A new Green’s function \(G_{\text{SDFT}} = (\omega - H_0 - V_{\text{SDFT}})^{-1} \) can be introduced such that \(G_{\text{SDFT}} = G_{\text{loc}} \) where \(G_{\text{loc}} \) is different from 0. Using this property of \(G_{\text{SDFT}} \), we find that the (in general complex) potential \(V_{\text{SDFT}} \), defined in the volume \(\Omega_{\text{loc}} \), is

\[
V_{\text{SDFT}}(r_5, r_6, \omega) = \int d_r dr_2 \int d_3 dr_4 G_{\text{SDFT}}^{-1}(r_5, r_1, \omega) \times G_{\text{SDFT}}(r_1, r_3, \omega) \Sigma(r_3, r_4, \omega) \times G(r_4, r_2, \omega) G_{\text{SDFT}}^{-1}(r_2, r_6, \omega) \quad (4)
\]

where \(G^{-1} \), if it exists, is the local inverse of \(G \) in \(\Omega_{\text{loc}} \) (while \(G^{-1} \) would be the full inverse, defined in the whole space). In principle SDFT is a formally exact theory. The most common approximation to SDFT is the dynamical mean-field theory \([7]\), which corresponds to a linearization in \(G_{\text{loc}} \).

In the limit case that \(\Sigma \) is completely localized in \(\Omega_{\text{loc}} \), then \(V_{\text{SDFT}} \) and \(G_{\text{SDFT}} \) coincide, respectively, with \(\Sigma \) and \(G \). The interesting situation is of course when this is not true. In fact, our \(V_{\text{SF}} \) of Eq. (3) corresponds to the case where \(\Omega_{\text{loc}} \to 0 \) so that this condition is certainly not fulfilled. Then, as we will illustrate below, the nonlocality of \(\Sigma \) will strongly influence \(V_{\text{SF}} \) and, in particular, lead to a frequency dependence which is not the frequency dependence of \(\Sigma \) itself. This will to a certain extent also be true for any \(\Omega_{\text{loc}} \) of finite range, so that the following discussions may also give useful insight for research in the field of DMFT.

To illustrate the frequency dependence of \(V_{\text{SF}} \) we consider the case of homogeneous systems, where all local quantities (like \(V_{\text{xc}} \) and \(V_{\text{SF}} \)) are constant in space. In particular, the xc potential is \(V_{\text{xc}} = \Sigma(p = p_f, \omega = 0) \), while, since \(V_{\text{SF}} = V_{\text{SF}}(\omega) \), one can directly write (here and throughout the Letter we adopt atomic units):

\[
[\text{Im} G_{\text{SF}}(r, r, \omega)] = \frac{2}{\pi} \frac{d_3 \delta(\omega + \mu - p_f^2/2 - V_{\text{SF}}(\omega))}{8\pi^2} \times \sqrt{\frac{\beta}{\pi}} \theta(\omega + \mu - V_{\text{SF}}(\omega)) \quad (5)
\]

Requiring that this is equal to \(|\text{Im} G(r, r, \omega)| \), one finds a unique local potential \(V_{\text{SF}} \) for \(V_{\text{SF}}(\omega) < \omega + \mu \):

\[
V_{\text{SF}}(\omega) = \omega + \mu - \left(\frac{\pi}{\sqrt{2}} |\text{Im} G(r, r, \omega)| \right)^2. \quad (6)
\]

It is first of all interesting to consider the case of simple metals, that can be modeled by a homogeneous electron gas (HEG). Here, we will assume a static but nonlocal self-energy: \(\Sigma_{\text{loc}}(r - r') = iG(r - r', 0^0) v_{\text{loc}}(r - r') \), that is a screened-exchange–like form where the screened Coulomb potential is \(v_{\text{loc}}(r - r') = v(r - r') e^{-|r - r'|/\lambda} \). For a larger screening length \(\lambda \), \(\Sigma \) is more effectively.
nonlocal, since less screened. \(\lambda \) tunes the effective range of the interaction: from \(\lambda = 0 \) (\(\Sigma = 0 \), Hartree approximation), to \(\lambda = \infty \) (unscreened Hartree-Fock approximation). Using the relation (6) we calculate \(V_{\text{SF}}(\omega) \) for different values of \(\lambda \), i.e., for different nonlocality ranges of \(\Sigma \) (see Fig. 1). We find that the spatial nonlocality of the static self-energies is completely transformed into the frequency dependence of \(V_{\text{SF}} \). This is an essential property of \(V_{\text{SF}} \), which radically distinguishes \(V_{\text{SF}} \) from the static \(V_{\text{xc}} \). In particular, looking at Fig. 1, one observes that the more nonlocal \(\Sigma \), the more dynamical \(V_{\text{SF}} \) becomes. This is confirmed by comparing two materials: aluminum and sodium.

The HEG is a prototype of metallic systems. Let us consider the simplest model insulator introduced by Callaway [21]. The Callaway’s model is obtained from HEG by inserting a gap \(\Delta \) between the occupied “valence” states \(\phi_v(r) \) (\(p < p_F \)) and the “conduction” states \(\phi_c(r) \) (\(p > p_F \)). Within the Green’s functions formalism this corresponds to a nonlocal static “scissor” self-energy

\[
\Sigma(r, r') = \Delta \sum \phi_v(r) \phi_c^*(r'),
\]

which rigidly shifts all conduction states, and produces a gap between the valence, \(E_v = E_c = \mu \), and the conduction, \(E_c = E_v + \Delta \), band edges. Because of the homogeneity of the model, Eq. (6) is still applicable. From Eq. (6), one gets that \(V_{\text{SF}}(\omega) = 0 \) for \(\omega < E_v - \mu = 0 \) and \(V_{\text{SF}}(\omega) = \Delta \) for \(\omega > E_v - \mu = \Delta \). Between \(\omega = 0 \) and \(\omega = \Delta \), where \(\text{Im} G(\omega) = 0 \), there are many different choices for \(V_{\text{SF}}(\omega) \); from (5) it is enough that \(V_{\text{SF}}(\omega) \approx \omega + \mu \) to get \(\text{Im} G_{\text{SF}}(\omega) = 0 \). In any case a static constant potential, like \(V_{\text{xc}} \), cannot produce the correct band gap, because at \(E_v - \mu \) and \(E_c - \mu \) it should assume different values. The only effect of \(V_{\text{xc}} \) with respect to \(H_0 \) would be just a rigid shift of the whole band structure and no gap could be opened. In fact, \(\Delta \) in (7) corresponds to the derivative discontinuity of \(V_{\text{xc}} \) when an electron is added to the system: \(\Delta = V_{\text{xc}}^{(N+1)}(r) - V_{\text{xc}}^{(N)}(r) \) [11]. Our simple example demonstrates that this discontinuity, which constitutes the difference between the true quasiparticle gap and the Kohn-Sham one, is accounted for by the potential \(V_{\text{SF}} \) rightly through its frequency dependence.

Knowing the exact solutions, one can also verify how common approximations to SSE perform with these strongly frequency dependent functions, in particular, when we linearize the SSE by setting \(G = G_{\text{SF}} \) everywhere (in DFT this would correspond to the OEP approach). The linearized SSE is still self-consistent in \(V_{\text{SF}} \) and \(G_{\text{SF}} \). Yet we can approximate it at the first order setting \(G \) and \(G_{\text{SF}} \) equal to the Hartree \(G_H \). In the Hartree-Fock case in HEG, we get, for \(\omega > -E_F \):

\[
V_{\text{SF}}(\tilde{\omega}) = \frac{\omega + E_F}{E_F} = -\frac{2p_F}{\pi} \left[1 + \frac{\sqrt{\tilde{\omega}}}{2} \ln \left(\frac{\sqrt{\tilde{\omega}} - 1}{\sqrt{\tilde{\omega}} + 1} \right) \right],
\]

(8)
which shows a logarithmic divergence at the Fermi energy \(\omega = 0 \) and hence is very different from the exact solution (see the inset of Fig. 1). The approximated \(V_{\text{SF}} \) in HEG is distant from the exact one also when the linearized SSE is solved self-consistently. The agreement should improve when screening is taken into account, since then \(V_{\text{SF}} \) is less frequency dependent and \(G_{\text{SF}} \) is much closer to \(G \) and \(G_H \). Already for sodium the agreement is better than for aluminum. In any case, these results demonstrate that the linearization of the generalized SSE is a delicate procedure. In the following we will, however, show that it works very well in certain cases, for example, for the kernel \(f_{\alpha c} \) of TDDFT.

Up to now we have considered Dyson equations only for the one-particle Green’s function. The generalization of
SSE can, however, be applied to any Dyson-like equation, for example, involving two-particle Green’s functions, like the four-point reducible polarizability χ_{MB}. In this way we can derive an exact equation for the kernel $f_{\text{xc}} = f_{\text{xc}}^{(1)} + f_{\text{xc}}^{(2)}$ of TDDFT. In particular, following Ref. [6], we concentrate on the term $f_{\text{xc}}^{(2)}$ that describes electron-hole interactions. This means that in the TDDFT polarizability χ_{TD} the “gap opening” contribution due to the term $f_{\text{xc}}^{(1)}$ is already included by using $\chi_{0}^{\text{QP}} = -iG$. Applying this condition to the Dyson equation $\chi_{\text{MB}} = 4 \chi_{\text{TD}} + 4 \chi_{\text{TD}}[F_{\text{MB}} - f_{\text{xc}}^{(2)}]\chi_{\text{MB}}$ yields the generalized SSE, and hence the exact expression of $f_{\text{xc}}^{(2)}$:

$$f_{\text{xc}}^{(2)}(34) = \chi^{-1}(31)\chi_{\text{TD}}(1156)F_{\text{MB}}(5678) \times \chi_{\text{MB}}(7822)\chi^{-1}(24),$$

where $F_{\text{MB}} = i \Sigma / \delta G$ is the exchange-correlation part of the kernel of the Bethe-Salpeter equation, which, in the framework of ab initio calculations [5], is most frequently approximated by: $F_{\text{MB}}(1234) = -W^{\text{st}}(12)\delta(13)\delta(24)$ where $W^{\text{st}}(12) = W(r_{1}, r_{2}, \omega = 0)\delta(t_{2} - t_{1})$ is the statically screened Coulomb interaction. An approximated expression for $f_{\text{xc}}^{(2)}$, obtained from the linearized generalized SSE, where we set $\chi(12) = \chi_{0}^{\text{QP}}(12)$ and $\chi^{3}(1;23) = \chi_{\text{MB}}(1123) = 4 \chi_{\text{TD}}(1123) = 4 \chi_{0}^{\text{QP}}(1123) = -iG(12)G(31)$ is then

$$f_{\text{xc}}^{(2)}(\omega) = (\chi_{0}^{\text{QP}})^{-1}(\omega)\chi^{3}(\omega)W^{\text{st}}(0)\chi(\omega)(\chi_{0}^{\text{QP}})^{-1}(\omega).$$

In this equation only the frequency dependence of the various terms has been put into evidence, since it is mostly interesting to note that, although W and hence F_{MB} are static, f_{xc} is frequency dependent unless W is short-ranged, in which case the frequency dependence of the other components cancels. This recalls the analogous transformation of static self-energies into frequency dependent potentials discussed above. Equation (10) represents a new derivation of a two-point linear response exchange-correlation kernel that has previously been obtained in several other ways [23]. It has been shown to yield absorption or energy-loss spectra of a wide range of materials in very good agreement with experiment [23]. This means also that the linearization of the generalized SSE in this case turns out to be a very good approximation. The present derivation is particularly quick and straightforward, showing one of the advantages of the generalized Sham-Schlüter equation formulation.

In conclusion, in this Letter we propose a shortcut for the calculation of electronic spectra, based on a generalization of the Sham-Schlüter equation [9]. In particular, we have introduced a local and real potential for photoemission, with a frequency dependence stemming both from the frequency dependence and from the nonlocality of the underlying self-energy. We have illustrated some features at the example of model systems. We have also applied the approach to the derivation of an exchange-correlation kernel for the calculation of absorption spectra. This work opens the way to explore new approximations for simplified potentials and kernels that can be employed to calculate a wide range of electronic spectra.

We are grateful for discussions with R. Del Sol, G. Onida, F. Sottile, and F. Bruneval, and support from the EU’s 6th Framework Programme through the NANOQUANTA Network of Excellence (No. NMP-CT-2004-500198) and from ANR (Project No. NTOS-3_43900).

[8] Here we implicitly assume that G and G_{T} yield the same density, but this hypothesis can be straightforwardly generalized.
[19] The delicate question of the existence of a solution is beyond the scope of the present Letter.
[22] One has to be careful about the link between time-ordered and retarded quantities.