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Crystal field effects on 3d0 systems (Ti4+)   

3d0 systems in octahedral symmetry  
 
We start with the calculation of the atomic symmetry, but now including the crystal 
field program, as we did in chapter 1 for Ni2+. The files als4ti4a.rcg and als4ti4a.rac 
perform this calculation. The file als4ti4a.rcg has the following lines: 
   10    1    0   14    2    4    1    1 SHELL03000000 SPIN03000000 INTER8       

    0                         80998080            8065.47800     0000000         

    1     2 1 12 1 10         00      9 00000000 0 8065.4790 .00       1 
P 6  S 0 

P 5  D 1 

Ti4+ 2p06 3d00     1    0.0000    0.0000    0.0000    0.0000    0.0000HR99999999 
Ti4+ 2p05 3d01     6  464.8110    3.7762    0.0322    6.3023    4.6284HR99999999 

    2.6334 

Ti4+ 2p06 3d00      Ti4+ 2p05 3d01        -0.26267( 2P//R1// 3D) 1.000HR  38-100 
                    -99999999. 

   -1 
 
Compared with the original file als3ti4.rcg, some changes have been made in this 
inputfile with the goal to continue with the crystal field calculation afterwards. The 
changes one has to make are all in the first line:   
 

10    1    0   00    4    4    1    1 SHELL00000000 SPIN00000000 INTER8  
10    1    0   14    2    4    1    1 SHELL03000000 SPIN03000000 INTER8  
The 14 indicates the name of the output file that is used in RAC. It is renamed to 
als4ti4a.m14. The change to 2 is needed for calculations in low symmetry. It tells the 
program to calculate the additional matrices (see below). The SHELL comment has its 
second 0 changed to a 3. This implies that a crystal field can be added on the second 
shell as defined in the RCG file, which is the 3d-shell. The SPIN comment has also its 
second 0 changed to a 3. This implies that a magnetic (or exchange) field can be 
added, again on the second shell. In principle, one can add fields on any shell, but 
acting on core shells does not make physical sense.  
 
These changes have to be made in all cases where one would like to add a crystal field 
and/or a magnetic field. The general procedure is to start from a RCN2 calculation and 
modify the .rcf file according to the procedure given above. 
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als4ti4a.orrac2 als4ti4a als4ti4a.rac 

als3ti4.ps plo2 als3ti4 als3ti4.plo 

MODIFY 

rcg2 als4ti4a 

rcn2 als3ti4 

als4ti4a.m14 

als3ti4.rcf 

als4ti4a.rcg 

als3ti4.rcn 

 

We have performed two sets of crystal field multiplet calculations for Ti4+ ions. The 
files als4ti4a.rcg and als4ti4.rac recalculate the atomic multiplet spectrum by using a 
zero value for the crystal field splitting. In chapter 1, we have introduced the structure 
of the .rac inputfile. It is reproduced below. The values in red are the crystal field 
strengths in the initial and final state. They are both set to zero.  
 
The files als4ti4b.rcg and als4ti4b.rac  calculate the crystal field multiplet spectrum for 
a crystal field of 2.218 eV. The file als4ti4b.rcg is identical to als4ti4a.rcg. The only 
change that is made in the file als4ti4b.rac is the change of the crystal field values  
from 0.0 to 7.0. A value of 7.0 indicates a crystal field of 7.0 * 0.304 = 2.218 eV. 
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Y 

    % vertical 1 1 
 butler O3 

 to    Oh 

 endchain 
 actor   0+ HAMILTONIAN ground  PRINTEIG 

  OPER HAMILTONIAN 

    BRANCH 0+ > 0 0+      1.0 
  OPER SHELL2 

    BRANCH 4+ > 0 0+     0.00  

 actor   0+ HAMILTONIAN excite  PRINTEIG 
  OPER HAMILTONIAN 

    BRANCH 0+ > 0 0+     1.0 

  OPER SHELL2 
    BRANCH 4+ > 0 0+     0.00  

 actor  1- plane       transi PRINTTRANS  

   oper MULTIPOLE 
     branch  1- > 0 1-   1.000 
RUN 

 

 
The figure shows the result of the als4ti4a calculation (left) and the als4ti4b calculation 
(right). The als4ti4a calculation shows the same result as found in chapter 3 for a Ti4+ 
atom, with three peaks. In the figure we used two different settings for the 
broadenings. The bottom figure uses a constant broadening, while the top calculation 
uses a broadening that is different for every peak. In this way, the spectrum can be 
adapted to the experiment, as it turns out that in experiment there are different 



Chapter 2                   CRYSTAL FIELD EFFECTS  

broadenings for different peaks. The als4ti4b calculation shows seven peaks; after 
broadening the third and fourth peak overlap and one finds six peaks in the spectrum. 
These seven peaks are given at the bottom of the als4ti4b.ora file. 
TRANSFORMED MATRIX for TRIAD  2  (  0+   1-   1- 0) (1*7)  DIM :1:3:3   ACTOR 

PLANE            
  

       ---- MATRIX ----      PRINTTRANS       

  
 BRA/KET :  461.1850  461.9710  463.0501  463.5387  465.4900  468.5141  470.9370 

-------------------------------------------------------------------------------- 

  0.00000:  0.009445  0.015776  0.137714  0.021110  0.505803  0.346162  0.963990 
  

 TRANSFORMATION FINISHED 
 
This part of the als4ti4b.ora file gives the 'transformed matrix for triad2', where 
'triad2' is the transition from 0+ via 1- to 1- symmetry. Then follows a matrix with 
seven energies and seven intensities, which constitutes the complete result from the 
calculation. These seven sticks are then broadened in the plotting program. The 
meaning of 'triad2' and the respective symmetries will be explained below. A 
complication is the notation of the RAC2 program, which uses BUTLER notation, 
instead of the more familiar SCHONFLIESS notation for group symmetries. The 
translation between the two notations is given below in the character table of Oh 

symmetry. Here we note that 0+ identifies with A1g and 1- with T1u, which means 
that triad2 is the calculation of the transition matrix <A1g|T1u|T1u> in Oh symmetry. 
The dipole transition has T1u symmetry in an octahedral field. 
 
 

Crystal Field effects on 3d0 systems 
 
In this section we will focus on the discussion of the crystal field effects on the spectral 
shape of 3d0 systems. The 3d0 systems are special because they are not affected by 
ground state effects. The 3d0→2p53d1 transition can be calculated from a single 
transition matrix <A1|T1|T1> in Oh symmetry. The ground state A1 matrix is 1x1 and 
the final state T1 matrix is 7x7, making the transition matrix 1x7. In other words the 
spectrum consists of a maximum of seven peaks. Chapter 3 showed the complete 
calculation in SO3 symmetry. Below the branching from SO3 to Oh symmetry will be 
explained; for the moment we just use them. The respective degeneracies of the J-
values in SO3 symmetry and the degeneracies of the representations in Oh symmetry 
are collected in this table. 
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J in SO3 Deg. Branching Γ in Oh Deg. 

0 1 A1 A1 2 
1 3 3×T1 A2 3 
2 4 4×E, 4×T2 T1 7 
3 3 3×A2, 3×T1,3×T2 T2 8 
4 1 A1, E, T1, T2 E 5 

∑ 12   25 
 
It can be seen that a 2p53d1 configuration has twelve representations in SO3 symmetry 
that are branched to 25 representations in a cubic field. The overall degeneracy of the 
2p53d1 configuration is 6x10=60, implying a possibility of 60 transitions in a system 
without any symmetry. From these 25 representations, only seven are of interest for 
the calculation of the x-ray absorption spectral shape, because only these T1 symmetry 
states obtain a finite intensity. 
 

 461.856 462.329 462.613 463.442 465.024 468.588 470.405 
1 0.0924 0.0000 0.0000 0.0000 0.6001 0.0000 0.3075 
2 0.9009 0.0000 0.0000 0.0000 0.0384 0.0000 0.0607 
3 0.0068 0.0000 0.0000 0.0000 0.3615 0.0000 0.6318 
4 0.0000 0.0000 0.6019 0.0364 0.0000 0.3617 0.0000 
5 0.0000 0.0000 0.0459 0.6674 0.0000 0.2867 0.0000 
6 0.0000 0.0000 0.3521 0.2963 0.0000 0.3516 0.0000 
7 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0001 0.0000 0.0000 0.0000 0.2466 0.0000 0.7533 

 
This table shows the seven T1 symmetry states calculated with a crystal field splitting 
of 0.0 eV. One finds the three peaks that are related to J=1 final states, build from 
vector rows one, two and three. The third row is related to the 1P1 state and the 
intensity of the peak as given in the bottom row is equal to the square of this row, 
where the total intensity is normalised to 1.0. Rows four, five and six are related to the 
J=3 states and row seven is related to a J=4 state. It can be seen that with a value of 
10Dq of 0.0 eV, the 7x7 matrix blocks out to two 3x3 and one 1x1 matrices because 
one essentially is calculating a spectrum in SO3 symmetry. 
 

 The T1 final states of the 2p53d1 configuration with 10Dq=3.04 eV. The top 
row gives the energies and the bottom row the relative intensities of the 

seven final states that are build from seven basis-vectors. 
 460.828 461.641 462.806 464.048 465.859 468.313 471.369 
1 0.0662 0.0037 0.1550 0.0124 0.4916 0.0404 0.2308 
2 0.5944 0.0253 0.0007 0.2972 0.0280 0.0078 0.0466 
3 0.0046 0.0091 0.1128 0.0046 0.1845 0.2666 0.4178 
4 0.0161 0.4460 0.0340 0.0980 0.0097 0.2923 0.1039 
5 0.0020 0.2973 0.2980 0.0791 0.0331 0.2191 0.0714 
6 0.0044 0.0404 0.3986 0.0116 0.2417 0.1738 0.1294 
7 0.3124 0.1781 0.0009 0.4972 0.0113 0.0000 0.0001 
 0.0001 0.0003 0.0435 0.0001 0.1164 0.2430 0.5968 
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This table shows the seven T1 symmetry states calculated with a crystal field splitting 
of 3.04 eV. One finds the seven peaks that are all build from the seven basis vectors. 
The third row is again related to 1P1 symmetry and its square yields the intensity as 
given in the bottom row. Essentially one observes four main peaks, peaks 3, 5, 6 and 
7. Peak 6 and 7 are essentially the L2 edge peaks of respectively t2g and eg character. 
They are split by 3.05 eV, essentially the value of 10Dq. Peaks 3 and 5 are the L3 

peaks of t2g and eg character, also split by 3.05 eV. Peaks 1, 2 and 4 are low-intensity 
peaks that originate from the 'spin-forbidden transition' in the atomic multiplet 
calculation. 

 
This figure shows the crystal field multiplet calculations for the 3d0→2p53d1 transition 
in TiIV. The result of each calculation is a set of seven energies with seven intensities.  



Chapter 2                   CRYSTAL FIELD EFFECTS  

 
EXERCISE:  
1. Try to reproduce this figure by calculating the crystal field multiplet spectrum of 
Ti4+ as a function of the crystal field strength. The parameter to change is the value 
of the line "BRANCH 4+ > 0 0+     0.00".  The figure can be reproduced by setting the 
crystal field strengths from 0.0 to 10.0, in steps of 1.0, which identifies with steps of 
0.304 eV. 
2. What happens if one changes the initial state crystal field value and the final state 
crystal field value independently? 
3. What happens if one sets the crystal field values to negative numbers? 
4. What happens if one uses very large crystal field values, say a value of 100 eV? 
 
The seven states have been broadened by the lifetime broadening and the 
experimental resolution. From a detailed comparison to experiment it turns out to be 
the case that each of the four main lines has to be broadened differently. It is well 
known that the L2 part of the spectrum (i.e. the last two peaks) contains an additional 
Auger decay that accounts for a significant broadening with respect to the L3 part. This 
effect has been found to be an additional broadening of 0.5 eV half-width half-
maximum. For more details see degroot90a.pdf. An additional difference in broadening 
is found between the t2g and the eg states. This broadening has been ascribed to 
differences in the vibrational effects on the t2g respectively the eg states. Another cause 
could be a difference in hybridisation effects and in fact charge transfer multiplet 
calculations  indicate that this effect is more important than vibrational effects, as was 
shown in okada93a.pdf. Whatever the origin of the broadening, the comparison with 
experiment shows that if one performs crystal field multiplet calculations, the eg states 
must be broadened with an additional 0.4 eV hwhm for the Lorentzian parameter. The 
experimental resolution has been simulated with a Gaussian broadening of 0.15 eV 
hwhm. 
 
This figure compares the crystal field multiplet calculation of the 3d0→2p53d1 transition 
in TiIV with the experimental 2p x-ray absorption spectrum of FeTiO3. The titanium ions 
are surrounded by six oxygen atoms in a (little) distorted octahedron. The value of 
10Dq has been set to 1.8 eV. The calculation is able to reproduce all peaks that are 
experimentally visible. In particular the two small pre-peaks can be nicely observed. 
The similar spectrum of SrTiO3 has an even sharper spectral shape, related to the 
perfect octahedral surrounding of TiIV by oxygen.  
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Figure 3.7 The crystal field multiplet calculations for the 3d0→2p53d1 transition in TiIV. 
The atomic Slater-Condon parameters and spin-orbit couplings have been used as 
given in table 2.14. The bottom spectrum is the crystal field multiplet spectrum with 
atomic parameters and corresponds to the fifth spectrum in Figure 3.5; i.e. 10Dq is 
1.5 eV. Each next spectrum has a value of the Slater integrals further reduced by 
respectively 25%, 50%, 75% and 99%, i.e. the top spectrum is essentially the single 
particle (crystal field) result. 

 
Figure 3.7 shows the effect of the pd Slater-Condon parameters on the spectral shape 
of the 3d0→2p53d1 transition in TiIV. The bottom calculation is the same as in Figure 3.5 
and used the 80% reduction of the Hartree-Fock values in order to obtain a good 
estimate of the values in the free atom. In most solids the pd Slater-Condon 
parameters have essentially the same values as for the free atom, in other words the 
solid state screening of the pd Slater-Condon parameters is almost zero. The five 
spectra are calculated by using the same values for the 3d- and 2p-spin-orbit coupling 
and the same crystal field value of 1.8 eV. The Slater-Condon parameters are rescaled  
to respectively 80% (bottom), 60%, 40%, 20% and 1% (top). The top spectrum 
corresponds closely to the single particle picture, where one expects four peaks, 
respectively the L3-t2g, the L3-eg, the L2-t2g and the L2-eg peak, with respective 
intensities given by their  degeneracies, i.e. 6:4:3:2. This is exactly what is observed 
in the top spectrum, where it is noted that the intensity ratio is a little obscured by the 
differences in line width. One can conclude that there is a large difference between the 
single particle result (top spectrum) and the multiplet result (bottom spectrum). The 
Slater-Condon parameters have the effect to lower the intensity of the t2g peaks and 
shift intensity to the eg peaks. An even larger intensity shift can be observed from the 
L3 edge to the L2 edge and a very clear effect is the creation of additional  (pre-)peaks,  
because additional transitions become allowed. 
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The files als4ti4c.rcg and ti4ti4c.rac reproduce the calculation for a reduction to 50% 
of the atomic values. The only parameters that should be changed are the reduction 
factors in the als4ti4c.rcg file. That is, the second line must be changed from 
80998080 to 40994040. 
    0                         80998080            8065.47800     0000000         

    0                         40994040            8065.47800     0000000         

These numbers are used to multiply the parameters with, before the calculation starts. 
There are four numbers that are respectively used for the four types of parameters, 
indicated with a 1, 2, 3 or 4 at the end, i.e. 

1. The numbers with a 1 at the end are the 3d3d Slater integrals 
2. The numbers with a 2 at the end are the spin-orbit couplings 
3. The numbers with a 3 at the end are the 2p3d direct Slater integrals 
4. The numbers with a 4 at the end are the 2p3d exchange Slater integrals 

Instead of using the reduction factor, one can also change the individual numbers by 
hand to the required number. One can check in the als4ti4c.org file that the reductions 
have been performed in the correct manner. The file repeats first the input line and 
then reports the corrected values. the file gives the "PARAMETER VALUES IN  8065.5 
CM-1", which identifies with electronvolts and then tells that the values were multiplied 
with respectively 0.40, 1.00, 0.40 and 0.40, yielding the values for the respective 
parameters as given below. That is, the blue values are modified to the red values. 

ECHO: 
 TI4+ 2P05 3D01     6  464.8110    3.7762    0.0322    6.3023    
4.6284HR9999999 
 9 
 ECHO: 
     2.6334                                                                      
   
 
 
 TI4+ 2P05 3D01        PARAMETER VALUES IN  8065.5 CM-1 (HR TIMES 0.40 
1.00 0.40 0.40)     1  P 5  D 1 
 
                                       EAV            ZETA 1         ZETA 
2         F2(12)         G1(12)   
         G3(12)   
 
                                      464.811          3.776          
0.032          2.521          1.851 
          1.053 
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Figure 3.8 The seven peak positions (solid lines, left axis) of TiIV are given as a 
function of the Slater-Condon parameters. In addition the intensities (dashed, right 
axis) are given. 

 
Figure 3.8 shows the shifts in energy and intensity of the seven final states as a 
function of the Slater-Condon parameters. The solid lines indicate the respective 
energies (left axis) and one can observe that the four energy levels at the single 
particle limit on the left split into seven lines if the Slater-Condon parameters are 
turned on. More precisely, it is only the L3 edge that is split and its two states are split 
in five states. The L2 edge is not split, and in fact because of this the L2 edge can be 
expected to stay closer to the single particle result, in particular the energy separation 
between the t2g and eg level of the L2 edge is only little affected. This is important in 
those cases where the multiplet effects are smaller, such as for the L2,3 edges of the 
4d-elements. In the case of 4d-elements, their L2 edge can be expected to be closer 
related to the single particle picture than the corresponding L3 edge. The intensity ratio 
of the seven lines at the single particle limit can be found to be approximately 
4:4:3:2:2:0:0. One has to add a 4 and a 2 to 6 to find the single particle result with its 
6:4:3:2 ratio. 
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Crystal Field Theory 

 
Crystal Field Theory is a well-known model used to explain the electronic properties of 
transition metal systems. It has been developed in the fifties and sixties against the 
background of explaining optical spectra and EPR data.  
 
The starting point of the crystal field model is to approximate the transition metal as 
an isolated atom surrounded by a distribution of charges that should mimic the 
system, molecule or solid, around the transition metal. At first sight, this seems to be 
a very simplistic model and one might doubt its usefulness to explain experimental 
data. However it turned out that such a simple model was extremely successful to 
explain a large range of experiments, like optical and EPR spectra. 
 
Introduce basic Crystal field model here 
 
Maybe the most important reason of the success of the crystal field model is that the 
explained properties are strongly determined by symmetry considerations. With its 
simplicity in concept, the crystal field model could make full use of the results of group 
theory. Group theory also made possible a close link to atomic multiplet theory. Group 
theoretically speaking, the only thing crystal field theory does is translate, or branch, 
the results obtained in atomic symmetry to cubic symmetry and further to any other 
lower point groups. The mathematical concepts for these branching are well 
developed. 
 
In this chapter we will focus on these group theoretical results and their effects on the 
ground states as well as on the spectral shapes. We will first briefly discuss the basics 
of group theory, to make the unfamiliar reader a little acquainted with the formalism. 
For any more serious discussion of group theory, the reader is referred to books 
dedicated to group theory. 

A short outline of Group Theory  
 
Group theory is a mathematical framework to deal with symmetry properties of 
systems. The main result of group theory for x-ray absorption is a systematic method 
to classify the ground state, final state and transition operator within a certain 
symmetry. We will concentrate on D4h and Oh symmetry as these two symmetries are 
most often used for the analysis of x-ray absorption spectra. The discussion of all 
other point groups follows a similar path. 
 
A group is a set of symmetry elements that satisfy four requirements:  
• A group is closed: The product of two elements is also an element of the group.  
• Multiplication is associative: The product of three elements e1, e2 and e3 has a 
result, which is not dependent if the calculation is carried out as (e1e2)e3 or e1(e2e3). 
Note that for most groups e1e2≠e2e1. Only for so-called Abelian groups, the 
multiplication is commutative.  
• There is a unit element: A unit element multiplied with any other element yields 
that element. 
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• There is an inverse element: for any element of a group there is another element 
for which the product of the two elements yields the unit element. 
 
The relevant symmetry operations for Oh and D4h symmetry are (a) the identity 
operation E; (b) rotations, for example 2z is a two-rotation (180 degrees) around the 
z-axis; (c) inversion in the centre of symmetry I; (d) reflections σ and (e) rotary 
reflections S. Rotary reflections are combinations of rotations and reflections into one 
symmetry operation. In the discussion we will limit ourselves to the identity operation 
and rotations. The subgroup that can be constructed from rotations and E can be 
extended by acting on its members by the inversion symmetry I, thereby creating also 
the (rotary) reflections.  
  
As an example we analyse an object of D4 symmetry, i.e. the symmetry properties of a 
square in three-dimensional space. We try to find all symmetry properties that leave 
the square identical in shape. The square is centred on (0,0) , with the four corners 
A=(1,1) , B=(-1,1) , C=(-1,-1) and D=(1,-1) , using an x and y -axis. The unit 
element, indicated with E, leaves the square in place. Another symmetry element is a 
rotation about the out-of-plane z-axis by 90 degrees, indicated as a fourfold rotation 
around z, in short 4z. This symmetry element can be carried out twice to give a 
rotation of 180 degrees, written as twofold rotation around z or 2z. Three times 4z 

gives a rotation of 270 degrees, which identifies without a rotation of -90 degrees or -
4z. If the symmetry element is carried out four times it yields again the unit element. 
Table 1 gives the matrices of these four elements. The last column gives the trace, i.e. 
the sum of the diagonal elements of the symmetry effect written in matrix form. For 
example, the fourfold rotation around 4z has a matrix as given in equation 3.1. When 
one acts with this matrix on corner A one obtains corner B, etc. 








−
=















 −
1
1

1
1

01
10

     (3.1) 

The last column gives the inverse element. All elements are their own inverse, except 
4z and -4z which are each others inverse, i.e. 4z*-4z=E. There are more possible 
symmetry elements. For example a rotation by 180 degrees over the x-axis, 2x, and 
similarly a rotation by 180 degrees over the y-axis, 2y. The last two symmetry 
operations are rotation by 180 degrees over the diagonal xy-axis 2xy and the x-y-axis 
2x-y.  

Element Inverse ABCD Trace 
E E ABCD 2 
4z -4z BCDA 0 
2z 2z CDAB -2 
-4z 4z DABC 0 
2x 2x BADC 0 
2y 2y DCBA 0 
2xy 2xy ADCB 0 
2x-y 2x-y CBAD 0 

 

Table 3.1: The symmetry operations of D4 symmetry. 
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Using table 3.1, the four group requirements can be checked. The unit element is E. 
The inverse of each element is given in the second column. All rotations over 180 
degrees are their own inverse. The only two elements that have an inverse different 
from itself are the rotations by 90 degrees, which are the inverses of each other. The 
third column gives the change from the four corners ABCD to the positions after the 
symmetry operation. It can be checked that the group is closed as the product of two 
elements is always an element of the group. For example 4z*2z gives -4z, etc. The D4 
group is not Abelian, because for example 2xy*2x gives -4z and 2x*2xy gives 4z.  

Character Tables  

  
We now shortly outline how to make and use the so-called character table of a group. 
The first thing to do is to separate the symmetry elements into classes G. Each class 
includes the same type of symmetry operation. More formally, a class is formed by all 
elements that are conjugated to each other. B is a conjugate of A if B = XAX-1 , where 
X is any element of the group. It can be shown that there are five classes for D4 
symmetry. A one-dimensional class containing E and one containing 2z. Two-
dimensional classes containing 4z and -4z , another one with 2x and 2y and a third one 
with 2xy and 2x-y. For example 2xy*2x*(2xy)-1 gives 2y, etc. Classes can also be 
differentiated directly by the nature of their symmetry operations, for example 
rotations with different angles and rotations over different directions, respectively x, z 
and xy. The x-axis and y-axis are equivalent hence 2x and 2y are member of the same 
class.  
 
It is now possible to generate the so-called character table. A character table gives for 
all the possible (irreducible) representations Γ their respective characters χ for each 
class of symmetry operations. As such a character table is a compact notation of all 
the symmetry effects of a group and it will be shown below that the character tables 
are a powerful means to describe the crystal field effect. The character of a symmetry 
operation for a particular representation is given as the trace of the matrix element. 
Group theoretical analysis gives the following rules: 
 
1. The number of representations is equal to the number of classes. 
2. The total number of symmetry elements h is equal to ∑G dG, where dG is the 
degeneracy or dimension of each class. 
3. The dimensions of the representations do obey the fact that ∑Γ dΓ

2 = h, where h is 
the total number of symmetry elements.  
4. The characters of the unit element G1 are given by the dimension of the 
representation dΓ. 
5. There is a totally symmetric representation Γ1 that has all its characters equal to 1. 
6. The characters of the last representation Γ5 are given by the traces of the five 
classes. 
7. All classes are orthogonal, i.e. for class i and class j we have ∑Γχi·χj = 0 
8. All normalised representations are orthogonal, i.e. for representation i and 
representation j we have ∑G dG⋅χi·χj = 0. The sum of the multiplication of the characters 
times their dimension equals zero. 
 
Applying these rules to the example of D4 symmetry, one finds the following: As 
discussed, D4 has 5 classes with degeneracies 1, 1, 2, 2 and 2. 
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1. There are 5 classes that imply 5 representations. 
2. There are 8 symmetry elements. 
3. The dimensions of the representations must be respectively 1, 1, 1, 1 and 2, i.e. 
12+12+ 12+12+22=8. 
4. The first column belonging to the class of the unit element G1 is equal to the 
respective dimensions of the representations, i.e. 1, 1, 1, 1 and 2. 
5. The first representation Γ1 has characters 1, 1, 1, 1 and 1. 
6. The last representation Γ5 is equal to the traces of the five classes, i.e. 2, -2, 0, 0 
and 0.  
The boldface part of the character table is filled now. 
7. The orthogonality rules allow one to completely fill the character table as given 
below, for example ∑Γχ1·χ2 = 0 implies that χ2=1 for the representations Γ2, Γ3 and 

Γ4,etc. 
 
 

 D4 (D4h) G1 G2 G3 G4 G5 

   1 1 2 2 2 

Butler Mulliken Bethe E 2z 4z, -4z 2x, 2y 2xy, 2x-y 

0 A1 Γ1 1 1 1 1 1 

0̂  A2 Γ2 1 1 1 -1 -1 

2 B1 Γ3 1 1 -1 1 -1 

2̂  B2 Γ4 1 1 -1 -1 1 

1 E Γ5 2 -2 0 0 0 
 

Table 3.2: The character table of D4 symmetry. Using the rules given above, the 
character table can be filled. 

 
There are a number of different notations for the five representations. The Bethe 
notation is most common in physics and the Mulliken notation is most familiar in 
chemistry. The Butler notation is not often used, but it is included because Butler's 
computer programmes(Butler 1981) have been included in most multiplet program 
packages used to calculate spectra.  
 
One can extend the character table of D4 to D4h by acting on all symmetry elements 
with the inversion symmetry I. This creates five new classes of (rotary) reflections G6 

to G10. As far as the character table is concerned the effects of I can be condensed to a 
duplication of the representations into even (gerade) and odd (ungerade) 
representations, i.e. A1 is duplicated into A1g and A1u, etc. The characters of G1 to G5 
are equal for both even and odd representations. In addition for the gerade 
representations, the characters of G6 to G10 are equal to the characters of G1 to G5. In 
case of the ungerade representations, the characters of G6 to G10 are given by 
multiplying the characters of G1 to G5 by -1. Instead of using the whole 10x10 table of 
D4h symmetry, it is easier to use the 5x5 table of D4 and using these rules to find the 
characters for D4h. 
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The character table of octahedral symmetry 

 
The most important crystal field effect in solids is the cubic or octahedral symmetry 
Oh. We limit ourselves again to rotations and we can use the character rules for O 
symmetry: O symmetry describes the symmetry of a cube in three dimensions. One 
can find the following symmetry elements:  
(a) Class G1 is the identity E;  
(b) Class G2 are three-fold rotations around the body diagonals 3xyz. There are 4 body 
diagonals in a cube, respectively xyz, xy-z, x-yz and -xyz, each containing a 120 
degrees and 240 degrees (or -120 degrees) three-fold rotation. In total this yields 8 
symmetry elements. 
(c) Class G3 are two-fold rotations around the axes connecting the centres of the faces. 
There are six faces thus three rotation axes, respectively 2x, 2y and 2z. 
(d) Class G4 are four-fold rotations around the same axes. There are 90 degrees and -
90 degrees rotations thus six symmetry elements 4x, 4y, 4z, -4x, -4y, -4z. 
(e) Class G5 are two-fold rotations around the axes connecting the centres of the 
edges. There are twelve edges thus six symmetry elements 2xy, 2x-y, 2xz, 2x-z, 2yz and 
2y-z. 
O symmetry has 5 classes with dimensions 1, 8, 3, 6 and 6 hence 24 elements. 
 
1. There are 5 classes that imply 5 representations. 
2. There are 24 symmetry elements. 
3. The dimensions of the representations are respectively 1, 1, 2, 3 and 3, i.e. 12+12+ 
22+32+32=24. 
4. The first column belonging to the class of the unit element G1 is equal to the 
respective dimensions of the representations, i.e. 1, 1, 2, 3 and 3. 
5. The first representation Γ1 has characters 1, 1, 1, 1 and 1. 
6. The last representation Γ5 is equal to the traces of the five classes, i.e. 3, 0, -1, -1 
and 1.  
The boldface part of the character table is filled now. 
7. The orthogonality rules allow one to fill the character table as given below, for 
example ∑Γχ1·χ2 = 0 implies that χ2=1 for the representations Γ2, and χ2=-1 for Γ3 and 

χ2=0 for Γ4,etc. 
 

The character table of Oh symmetry. 

 O (Oh) G1 G2 G3 G4 G5 

   1 8 3 6 6 

Butler Mulliken Bethe E 

3xyz, 3xy-z, 
3x-yz, 3-xyz, 
-3xyz, -3xy-z, 
-3x-yz, -3-xyz, 

2x, 2y, 2z 
4x, 4y, 
4z, -4x, 
-4y, -4z 

2xy, 2x- 

2xz, 2x-z 

2yz, 2y-z 

0 A1 Γ1 1 1 1 1 1 

0̂  A2 Γ2 1 1 1 -1 -1 

2 E Γ5 2 -1 2 0 0 

1 T1 Γ3 3 0 -1 1 -1 
∧

1 T2 Γ4 3 0 -1 -1 1 
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The full character table of Oh symmetry can be derived by acting on the symmetry 
elements with the inversion operator I and applying the rules for the expansion of the 
5x5 table to the 10x10 table as given above for D4h symmetry. We will now continue 
with the description of the crystal field multiplet Hamiltonian, where we will 
concentrate on Oh and D4h symmetry.  

Total Symmetry and Multiplication Tables 

 
The crystal field multiplet calculations for x-ray absorption are performed in total 
symmetry J, i.e. with the inclusion of the spin-orbit coupling. As discussed in chapter 
2, this is necessary because the core hole spin-orbit coupling is large and does not 
allow to use LS-coupling schemes for the final state of the x-ray absorption process. In 
spherical symmetry the value of J is given as all values that range from |L-S| to L+S, 
in steps of 1. If one changes spherical symmetry into cubic symmetry, the orbital 
momentum L is affected as will be discussed in detail later in this chapter. The spin 
quantum numbers are in principle not affected, but if one includes the core hole spin-
orbit coupling one has to modify the symmetry of the spin quantum number also to 
cubic symmetry, in order to be able to multiply the L and S symmetry states that are  
both described with the representations given in table 3.2 and 3.3. 

O A1 A2 T1 T2 E 

A1 A1 A2 T1 T2 E 

A2 A2 A1 T2 T1 E 

T1 T1 T2 
T1 + T2 
+E + A1 

T1 + T2 
+E + A2 

T1+T2 

T2 T2 T1 
T1 + T2 
+E + A2 

T1 + T2 
+E + A1 

T1+T2 

E E E T1+T2 T1+T2 A1+A2+E 

 
Table 3.3: The multiplication table of O symmetry. 
 
The multiplication rules that apply in Oh and D4h symmetry can be found directly from 
their character tables. Table 3.4 gives the multiplication table of O symmetry. For 
example, multiplying E symmetry with E symmetry yields A1 plus A2 plus E symmetry. 
This can be checked from the character table as follows: E⊗E gives the characters 4, 1, 
4, 0 and 0. The first number gives the dimension. The dimension of 4 implies that the 
added dimensions of the representations must also be 4. If a T1 or a T2 state is one of 
the representations, one can only add a A1 or A2 state. The character tables learn that 
none of these combinations can yield the characters 4,1,4,0,0. One finds that only the 
combination A1⊕A2⊕E yields the needed overall characters. In analogy one can 
determine the complete multiplication table as given in table 3.4. Table 3.5 repeats 
this procedure for D4 symmetry. 

D4 A1 A2 B1 B2 E 

A1 A1 A2 B1 B2 E 

A2 A2 A1 B2 B1 E 

B1 B1 B2 A1 A2 E 
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B2 B2 B1 A2 A1 E 

E E E E E 
A1+A2+ 
B1+B2 

 

Table 3.4: The multiplication table of D4 symmetry. 

We have now enough group theoretical information to understand the consequences of 
the crystal field effect on the atomic multiplet states. 

The Crystal Field Multiplet Hamiltonian  

 
The crystal field multiplet Hamiltonian consists of the atomic Hamiltonian as outlined in 
the previous chapter, to which an electrostatic field is added: 
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The only term added to the atomic Hamiltonian is an electrostatic field, which consists 
of the electronic charge e times, a potential that describes the surroundings φ(r). The 
potential φ(r) is written as a series expansion of spherical harmonics YLM's: 
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The crystal field is regarded as a perturbation to the atomic result. This implies that it 
is necessary to determine the matrix elements of φ(r) with respect to the atomic 3d 
orbitals <3d|φ(r)|3d>. One can separate the matrix elements into a spherical part and 
a radial part, as was done also for the atomic Hamiltonian in equation 2.6. The radial 
part of the matrix elements yields the strength of the crystal field interaction. The 
spherical part of the matrix element can be written completely in YLM symmetry, where 
the two 3d-electrons are written as Y2m. This gives: 
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The second 3J-symbol is zero unless L is equal to 0, 2 or 4. This limits the crystal field 
potential for 3d electrons to: 
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The first term A00Y00 is a constant. It will only shift the atomic states and it is not 
necessary to include this term explicitly if one calculates the spectral shape. 
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Cubic crystal fields  

 
A large range of systems posses a transition metal ion surrounded by six or eight 
neighbours.  The six neighbours are positioned on the three Cartesian axes, or in other 
words on the six faces of a cube surrounding the transition metal. They form a so-
called octahedral field. The eight neighbours are positioned on the eight corners of the 
cube and form a so-called cubic field. Both these systems belong to the Oh point group. 
The character table of Oh symmetry is given above. Oh symmetry is a subgroup of the 
atomic SO3 group. 
 
The calculation of the x-ray absorption spectral shape in atomic symmetry involved the 
calculation of the matrices of the initial state, the final state and the transition. The 
initial state is given by the matrix element <3dN | HATOM | 3dN>, which for a particular 
J-value in the initial state gives ∑J<J|0|J>. The same applies for the final state matrix 
element <2p53dN+1 | HATOM | 2p53dN+1>, where ∑J'<J'|0|J'> is calculated for the values 
of J' that fulfil the selection rule, i.e. J'=J-1, J and J+1. The dipole matrix element 
<3dN | p | 2p53dN+1> implies the calculation of all matrices that couple J and J': 
∑J,J'<J|1|J'>. To calculate the x-ray absorption spectrum in a cubic crystal field, these 
atomic transition matrix elements must be branched to cubic symmetry. This is 
essentially the only task to fulfil. 
 
 

SO3 Oh (Butler) Oh (Mulliken) 
S 0 0 A1 
P 1 1 T1 
D 2 2 + 1  ˆ E+T2 

F 3 0̂  + 1 + 1  ˆ A2+T1+T2 

G 4 0 + 1 + 2 + 1  ˆ A1+E+T1+T2 

Table 3.5 Branching rules for the symmetry elements by going from SO3 symmetry to 
Oh symmetry. 

Table 3.6 gives the branching from SO3 to Oh symmetry. This table can be determined 
from group theory(Butler 1981). This table implies that an S symmetry state in atomic 
symmetry branches only to a A1 symmetry state in octahedral symmetry. This is the 
case, because the symmetry elements of an s-orbital in Oh symmetry are determined 
by the character table of A1 symmetry, i.e. whatever symmetry operation one applies 
an s-orbital remains an s-orbital. This is not the case for the other orbitals. For 
example, a p-orbital can be described with the characters of the T1 symmetry state in 
Oh symmetry, for example the class G3, a two-fold rotation around x, inverts the p-
orbital.  A d-orbital or a D symmetry state in SO3, branches to E plus T2 symmetry 
states in octahedral symmetry. This can be related to the character table by adding 
the characters of E and T2 symmetry, yielding the overall characters 5, -1, 1, -1 and 1, 
which describe the properties of d-orbitals in Oh symmetry, i.e. the dimension of a d-
orbital is 5 and the class G4 (a fourfold rotation around x) inverts the d-orbitals. This is 
a well-known result: A 3d electron is separated into t2g and eg electrons in octahedral 
symmetry, where the symmetries include the gerade-notation of the complete Oh 

character table. 
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One can make the following observations: The dipole transition operator has p-
symmetry and is branched to T1 symmetry. Having a single symmetry in Oh symmetry, 
there will be no dipolar angular dependence in x-ray absorption. The quadrupole 
transition operator has d-symmetry and is split into two operators in Oh symmetry, in 
other words there will be different quadrupole transitions in different directions. The 
Hamiltonian is given by the unity representation A1 of the symmetry under 
consideration. In Oh symmetry the atomic G-symmetry state branches into the A1 
Hamiltonian, which is a confirmation of equation 3.7 as given above. 
 
We can lower the symmetry from octahedral Oh to tetragonal D4h and describe this 
symmetry lowering again with a branching table. Table 3.4 gives the branching table 
from Oh to D4h symmetry. 
 

Oh (Butler) Oh (Mulliken) D4h (Butler) D4h (Mulliken) 
0 A1 0 A1 

0̂  A2 2 B1 

1 T1 1 +  0̂ E + A2 

1̂  T2 1 +  2̂ E + B2 

2 E 0 + 2 A1 + B1 

Table 3.6 Branching rules for the symmetry elements by going from Oh symmetry to 
D4h symmetry. 

 
An atomic s-orbital is branched to D4h symmetry according to the branching series 
S→A1→A1. In other words it is still the unity element, and it will always be the unity 
element in all symmetries. An atomic p-orbital is branched according to P→T1→E+A2. 
Adding the characters of E and A2 yields 3, -1, 1, -1 and -1, implying that a two-fold 
rotation around the z-axis inverts a p-orbital, etc. Similarly an atomic d-orbital is 
branched according to D → E+T2 → A1+B1+E+B2. Adding the characters of these four 
representations yields 5, 1, -1, 1 and 1. The dipole transition operator has p-symmetry 
and hence is branched to E+A2 symmetry, in other words the dipole operator is 
described with two operators in two different directions implying an angular 
dependence in the x-ray absorption intensity. The quadrupole transition operator has 
d-symmetry and is split into four operators in D4h symmetry, in other words there will 
be four different quadrupole transitions in different directions/symmetries. The 
Hamiltonian is given by the unity representation A1. Similarly as in Oh symmetry, the 
atomic G-symmetry state branches into the Hamiltonian in D4h symmetry according to 
the series G→A1→A1. In addition it can be seen that the E symmetry state of Oh 
symmetry branches to the A1symmetry state in D4h symmetry. The E symmetry state 
in Oh symmetry is found from the D and G atomic states. This implies that also the 
series G→E→A1 and D→E→ A1 become part of the Hamiltonian in D4h symmetry. This is 
again a confirmation of equation 3.6, where we find that the second term A2MY2M is 
part of the Hamiltonian in D4h symmetry. The three branching series in D4h symmetry 
are in Butlers notation (Butler 1981)given as 4→0→0, 4→2→0 and 2→2→0 and the 
radial parameters related to these branches are indicated as X400, X420, and X220. The 
X400 term is important already in Oh symmetry. This term is closely related to the cubic 
crystal field term 10Dq as will be discussed below. 
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The definitions of the Crystal Field parameters  
 
In order to compare the X400, X420, and X220 definition of crystal field operators to other 
definitions like Dq, Ds, Dt, we compare their effects on the set of 3d-functions. The 
most straightforward way to specify the strength of the crystal field parameters is to 
calculate the energy separations of the 3d-functions. In Oh symmetry there is only one 
crystal field parameter X40. This parameter is normalised in a manner that creates 
unitary transformations in the calculations. The result is that it is equal to 1/18*√30 
times 10Dq, or 0.304 times10Dq. 
 
In tetragonal symmetry (D4h) the crystal field is given by three parameters, X400, X420 
and X220. An equivalent description is to use the parameters Dq, Ds and Dt. Table 3.8 
gives the action of the X400, X420 and X220 on the 3d-orbitals and relates the respective 
symmetries to the linear combination of X parameters, the linear combination of the 
Dq, Ds and Dt parameters and the specific 3d-orbital(s) of that particular symmetry. 
 

Γ Energy expressed in X-terms Energy in D-terms orbitals 
b1 30-½·X400 − 42-½·X420 − 2·70-½·X220  6Dq+2Ds−1Dt 3dx2-y2 

a1 30-½·X400 + 42-½·X420 + 2·70-½·X220  6Dq−2Ds−6Dt 3dz2 
b2 -2/3·30-½·X400 + 4/3·42-½·X420 − 2·70-

½·X220 
-4Dq+2Ds−1Dt 3dxy 

e -2/3·30-½·X400 − 2/3·42-½·X420 + 70-

½·X220 
-4Dq-1Ds+4Dt 3dxz, 3dyz 

Table 3.7 The energy of the 3d orbitals is expressed in X400, X420 and X220 in the second 
column and in Dq, Ds and Dt in the third column. 

 
From this table we can relate both notations and write X400, etc as a function of Dq, Ds 
and Dt.  
• X400 = 6·30½·Dq−7/2·30½·Dt 
• X420 = −5/2·42½·Dt 
• X220 = −70½·Ds.  
The inverse relationship imply: 
• Dq = 1/6·30-½·X400 − 7/30·42-½·X420  

• Ds = -70-½· X220 

• Dt = -2/5·42-½·X420 
 
These relations allow the quick transfer from for example the values of Dq, Ds and Dt 
from optical spectroscopy to the X-values as used in x-ray absorption. 
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3d0 systems in lower symmetries 
 
If one reduces the symmetry further from Oh to D4h the seven lines in the x-ray 
absorption spectrum of TiIV split further. The respective degeneracies of the 
representations in Oh symmetry and the corresponding symmetries in D4h symmetry 
are collected in this table. 
 

Γ in Oh Deg.  Γ in D4h  Deg. 
A1 2 A1 A1 2+5 7 
A2 3 B1 A2 7 7 
T1 7 E+A2 B1 3+5 8 
T2 8 E+B2 B2 8 8 
E 5 A1+B1 E 7+8 15 

∑ 25    45 
 
A 2p53d1 configuration has twelve representations in SO3 symmetry that are branched 
to 25 representations in a cubic field. These 25 representations are further branched to 
45 representations in D4h symmetry, of the overall degeneracy of 60. From these 45 
representations, 22 are of interest for the calculation of the x-ray absorption spectral 
shape, because they have either E or A2 symmetry. There are now two different final 
state symmetries possible because the dipole operator is split into two representations. 
The spectrum of two-dimensional E-symmetry relates to the in-plane direction of the 
tetragonal structure, while the one-dimensional A2-symmetry relates to the out-of-
plane direction. 
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This figure shows the crystal field multiplet calculation of TiIV in D4h symmetry, using 
the files als4ti4d4h.rcg and als4ti4d4h.rac. Four calculations have been performed. The 
value of the X40 branch was set to 7.0 in all cases and for the two other parameters 
X42 and X22 the combinations (5,0), (-5,0), (0,5) and (0,-5) were made. The four 
outputfiles have been saved as als4ti4d4hm0.ora, etc. The figure is made with the file 
als4ti4d4h.plo. One can use the expressions on the previous page to calculate the  
values of 10Dq, Ds and Dt and the energy positions of the different 3d-orbitals. For 
example, the parameters (X40,X42,x22)= (7,0,5) relate to (10Dq, Dt,Ds) = (2.13, 0, 
0.597), etc. 
 

Lower symmetry and angular dependence 
 
 
Examples of this angular dependence in D4h and lower symmetries can be found in the 
study of interfaces, surfaces and adsorbates. A detailed study of the symmetry effects 
on the calcium 2p x-ray absorption spectra at the surface and in the bulk of CaF2 did 
clearly show the ability of the multiplet calculations to reproduce the spectral shapes 
both in the bulk as at the reduced C3v symmetry of the surface (see himpsel91a.pdf). 
 
The group of Anders Nillson performed 
potassium 2p x-ray absorption experiments of 
potassium adsorbed on Ni(100) as well as the 
co-adsorption system CO/K/Ni(100) 
hasselstrom00a.pdf. The figure on the right 
shows the K 2p x-ray absorption spectra of 
K/Ni(100) compared with CO/K/Ni(100). Note 
that potassium can be considered as K+, which 
is a 3d0 system similar to Ti4+. The co-
adsorption system shows significantly more 
structural details, which is caused by the strong 
(crystal) field of the CO molecules on the K 
ions. The CO and K adsorbates can be 
considered to be placed on respectively the 
black and white squares of a checkers game. 
Each K ion is surrounded by  the four CO 
molecules in plane as well as the nickel surface 
below and vacuum above. This C4v symmetry 
field is expected to have significant angular 
dependence between the x-ray absorption 
spectral shape in plane and out-of-plane. This 
is shown in the bottom half of the figure. Two 
asymmetric peaks are visible for (near) grazing 
incidence and four peaks are visible at normal 
incidence. 
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This figure shows a crystal field multiplet 
calculation of the K 2p x-ray absorption 
spectrum in C4v symmetry. The calculation 
reproduces the two asymmetric peaks that 
are visible for grazing incidence and four 
peaks at normal incidence. At normal 
incidence the electric field of the x-ray 
probes the bonds that are in the direction 
along the Ni(100) surface. These are the 
bonds/interactions between the K ion and 
the CO molecules. Because of the four CO 
molecules surrounding the K ion, this 
interaction induced a clear energy 
difference between the 3dx2-y2 orbitals 
pointing towards the CO molecules and 
3dxy orbitals pointing in between the CO 
molecules. It is the energy difference 
between these orbitals that causes the 
two peaks to be present. This effect can 
be nicely shown by using exactly the same 
crystal field parameters and reducing the 
Slater-Condon parameters to zero. This 
single particle limit is shown in the bottom 
half of the figure. 
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Crystal field effects on 3dN systems   

 

The energies of the 3dN configurations  
 
Table 2.6 gives the energy levels of a 3d8 configuration and table 2.15 gives the 
ground states of the 3dN configurations in atomic symmetry. The crystal field effect 
modifies these energy levels by the additional terms in the Hamiltonian as given in 
equation 3.6. We will use the 3d8 configuration as an example to show the effects of 
the Oh and D4h symmetry. Assuming for the moment that the 3d spin-orbit coupling is 
zero, in Oh symmetry the five term symbols in spherical symmetry split into eleven 
term symbols. Their respective energies can be calculated by adding the effect of the 
cubic crystal field 10Dq to the atomic energies. The diagrams of the respective 
energies with respect to the cubic crystal field (normalised to the Racah parameter B) 
are known as the Tanabe-Sugano diagrams.  
 

 Relative
Energy 

Symmetries in Oh Symmetries in D4h 

1S 4.6 eV 1A1 1A1 
3P 0.2 eV 3T1 3E+3A2 
1D -0.1 eV 1E + 1T2 1A1+1B1 + 1E+1B2 
3F -1.8 eV 3A2 + 3T1 + 3T2 3B1 + 3E + 3A2 + 3E + 3B2 
1G 0.8 eV 1A1+1T1+1T2+1E 1A1+1E + 1A2+1E+1B2+1A1+1B1 

Table 3.8 The five symmetry states of a 3d8 configuration in SO3 symmetry and their 
respective energies for NiII are given in columns 1 and 2. Column 3 gives the 
respective symmetries of these states in Oh symmetry and column 4 in D4h symmetry. 
In both cases the spin-orbit coupling has not yet been included. 
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This figure gives the Tanabe-Sugano diagram for the 3d8 configuration. The ground 
state of a 3d8 configuration in Oh symmetry has 3A2 symmetry. It is set to zero in 
figure 3.1. If the crystal field energy is 0.0 eV one has effectively the atomic multiplet 
states. From low energy to high energy, one can observe respectively the 3F, 1D, 3P, 1G 
and 1S states. Including a finite crystal field strength splits these states, for example 
the 3F state is split into 3A2 + 3T1 + 3T2 as indicated in table 3.9. At higher crystal field 
strengths states start to change their order and they cross. If states actually cross 
each other or show non-crossing behaviour depends on the fact if their symmetries 
allow them to form a linear combination of states. This also depends on the inclusion 
of the 3d spin-orbit coupling.  

 

Generating Tanabe-Sugano diagrams from the multiplet calculations 
 
The crystal field multiplet calculations use a single configuration as their ground state, 
in other words its ground state can be found from the Tanabe Sugano diagram. This 
also implies that the energies of the TSD are calculated in the crystal field multiplet 
calculation. The numbers are given in the ora files. If we use the files als5ni2.rcg and 
als5ni2.rac (which are identical to the als1ni2 files), we find in the als5ni2.ora file the 
following lines: 
 
 H   H  AAA  M   M IIIII L     TTTTT  OOO  N   N IIIII  AAA  N   N             

 H   H A   A MM MM   I   L       T   O   O NN  N   I   A   A NN  N             

 HHHHH AAAAA M M M   I   L       T   O   O N N N   I   AAAAA N N N              
 H   H A   A M   M   I   L       T   O   O N  NN   I   A   A N  NN          

 H   H A   A M   M IIIII LLLLL   T    OOO  N   N IIIII A   A N   N          

  
 CALCULATIONS for ACTOR:HAMILTONIAN     GROUND           

  

       CALCULATING MATRIX for TRIAD  1  (  0+   0+   0+ 0)  (4*4) 
       MATRIX HAS 4 ZERO, 12 REAL and 0 COMPLEX ELEMENTS 

  

       DIAGONALIZATION 
  

  

       ---- EIGENVALUES ---- 
  

                 1         2         3         4    

   KET/PURE    3 0.92    4 0.93    1 0.92    2 0.94 
     EIGVAL -0.801748  0.603819  0.943165  5.315486 
  

  
  

       CALCULATING MATRIX for TRIAD  6  (  1+   0+   1+ 0)  (4*4) 
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       MATRIX HAS 4 ZERO, 12 REAL and 0 COMPLEX ELEMENTS 

  
       DIAGONALIZATION 

  

       ---- EIGENVALUES ---- 
  

                 1         2         3         4    

   KET/PURE    2 0.52    3 0.47    1 0.91    4 0.99 
     EIGVAL -1.472040 -0.734825  0.914685  1.097910 
  

       CALCULATING MATRIX for TRIAD 21  (  2+   0+   2+ 0)  (5*5) 
       MATRIX HAS 6 ZERO, 19 REAL and 0 COMPLEX ELEMENTS 

  

       DIAGONALIZATION 
  

       ---- EIGENVALUES ---- 

  
                 1         2         3         4         5    

   KET/PURE    4 0.76    3 0.40    1 0.41    2 0.90    5 0.74 
     EIGVAL -1.492799 -0.730041 -0.515086  0.855732  1.906725 
  

       CALCULATING MATRIX for TRIAD 31  ( ^1+   0+  ^1+ 0)  (6*6) 

       MATRIX HAS 10 ZERO, 26 REAL and 0 COMPLEX ELEMENTS 
  

       DIAGONALIZATION 

  
       ---- EIGENVALUES ---- 

  

                 1         2         3         4         5         6    
   KET/PURE    5 0.52    1 0.47    4 0.53    3 0.79    2 0.83    6 0.84 
     EIGVAL -2.572434 -1.420765 -0.629293  0.391811  0.886141  1.968931 
  
       CALCULATING MATRIX for TRIAD 46  ( ^0+   0+  ^0+ 0)  (1*1) 

       MATRIX HAS 0 ZERO, 1 REAL and 0 COMPLEX ELEMENTS 

  
       DIAGONALIZATION 

  

       ---- EIGENVALUES ---- 
  

                 1    

   KET/PURE    1 1.00 
     EIGVAL -1.400139 
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The numbers in bold red are the respective energies from the TSD. Collecting the 
energies yields: 
A1 -0.801748 0.603819  0.943165  5.315486 

T1 -1.472040 -0.734825  0.914685  1.097910 

E  -1.492799 -0.730041 -0.515086  0.855732  1.906725 
T2 -2.572434 -1.420765 -0.629293  0.391811  0.886141  1.968931 

A2 -1.400139 

 

The energies and symmetries are given in total symmetry. The ground state is found 
at -2.572434 eV and has T2 symmetry. This is the 3A2 ground state of a 3d8 
configuration, which in total symmetry gives A2xT1=T2 symmetry. The next lowest 
states are a number of states around –1.45 eV. In total there are four of these states 
with the symmetries T1, E, T2 and A2. Adding the degeneracies yields a 3+2+3+1= 9-
fold degenerate state. This is the 3T2 state, which can be checked by multiplying T1 
with T2, yielding the 4 symmetries as given. Below the lowest 5 states have been 
identified. Continuing in this way yields the complete TSD. 
A1                     -0.801748                      0.603819  0.943165  5.315486 
T1           -1.472040 -0.734825                      0.914685  1.097910 

E            -1.492799 -0.730041 -0.515086            0.855732  1.906725 

T2 -2.572434 -1.420765 -0.629293            0.391811  0.886141  1.968931 
A2           -1.400139 
      3A2              3T2         3T1          1E          1T2 
 
The determination of the TSD symmetries using the method as given above becomes 
rather complex if the ground state has many states, say between 3d3 and 3d7. Things 
become significantly simpler if one switches the ground state 3d spin-orbit coupling 
off. In doing so, the states of a certain symmetry state become exactly degenerate.  
 
The files als5ni2z.rcg and als5ni2z.rac use a zero 3d spin-orbit coupling. The only 
change that must be made is changed the value 0.0832 in the ground state to 0.0002. 
(check that this is done by inspecting the file als5ni2z.rcg).   
 
Ni2+ 2p06 3d08     4    0.0000   12.2341    7.5981    0.0832    0.0000HR99999999 
Ni2+ 2p06 3d08     4    0.0000   12.2341    7.5981    0.0002    0.0000HR99999999 
 
This yields an als5ni2z.ora file that has the TSD without the inclusion of the 3d spin-
orbit coupling. 
 
A1                     -0.687617            0.599870  0.883427           5.306541 

T1           -1.441638 -0.687618                      0.883427  1.093059 

E            -1.441639 -0.687617 -0.630865            0.883427  1.901225 
T2 -2.558384 -1.441639 -0.687618            0.422527  0.883427           1.964579 

A2           -1.441639 
          3A2        3T2          3T1           1E            1A1         3T1          1T1        1A1 
                                                                       1T2                        1E          1T2 
 
The symmetries one finds are exactly those as determined from group theory 
arguments above. Note that the ground state is a pure T2 symmetry state in double 
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group symmetry. This implies that it cannot be split and as such is not affected by the 
3d spin-orbit coupling. 

 
The figure shows the effect of the reduction of the Slater-Condon parameters. The 
figure is the same as figure 3.1 up to a crystal field of 1.5 eV. Then for this crystal field 
value the Slater-Condon parameters have been reduced from their atomic value, 
indicated with 80% of their Hartree-Fock value to 0%. The spectrum for 0% has all its 
Slater-Condon parameters reduced to zero, In other words the 2p3d coupling has been 
turned of and one essentially observes the energies of a 3d8 configuration, i.e. of a two 
3d-holes. This single particle limit has three configurations, respectively the two holes 
in egeg, egt2g and t2gt2g states. The energy difference between egeg and egt2g is exactly 
the crystal field value of 1.5 eV. This figure shows nicely the transition from the single 
particle picture to the multiplet picture for the 3d8 ground state. 
 
With the files als5ni2b.rcg and als5ni2b.rac we can reproduce the case that the 3d3d 
Slater-integrals are switched off. One obtains the following result for the eigenvalues 
in the initial state: 
A1 -1.340094 -0.223349                      0.893396  0.893396 

T1           -0.223349 -0.223349 -0.223349  0.893396 
E  -1.340094 -0.223349 -0.223349            0.893396  0.893396 

T2 -1.340095 -0.223349 -0.223349 -0.223349  0.893396  0.893396 

A2           -0.223349   
       ee                               et                                 tt          
 
The lowest energy state has two holes in the eg level. Its dimension is 1+2+3=6. The 
next level has a hole in eg and a hole in t2g. Its dimension is 1+9+4+9+1=24. The 
highest energy state has two holes in the t2g level with dimension 2+3+4+6=15. 
These degeneracies can be determined from the calculation of the possible number of 
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ways one can put two holes in an eg level. There are 4 eg orbitals, implying that the 
first hole has 4 possibilities, the second 3 and their product must be divided by 2, 
giving 4*3/2 = 6. Similarly for two t2g holes this gives 6*5/2=15. For a hole in eg plus 
a hole in t2g the number of possibilities is 6*4=24.  
 
The intermediate states on the right side of figure 3.2 can be determined using the 
files als5ni2z.rcg and als5ni2z.rac, by setting the first reduction factor from 80 to, for 
example, 60, 40 and 20, i.e. the following line in als5ni2z.rcg is changed. 
 
    0                         80998080            8065.47800     0000000         
    0                         40998080            8065.47800     0000000         
 
One can make the grid of the TSD as fine as one likes by calculating a large number of 
states. Interesting things happen if one is close to a crossing point, for example a 
high-spin to low-spin transition. If the 3d spin-orbit coupling is set to zero high-spin 
and low-spin states just cross as they are not coupled. However, if the 3d spin-orbit 
coupling is switched on, the ground state could become a mixture of high-spin and 
low-spin. An example can be found in piamonteze05a.pdf. 
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X-ray absorption calculations of 3dN systems 
 
The results of Ti4+ and Ni2+ can be generalised to all 3d transition metal ions. 
  

General calculation 3dN → 2p53dN+1  
in SO3 symmetry 

Initial State Transition Final State 
<0 | 0 | 0> <0 | 1 | 1> <0 | 0 | 0> 

<1 | 0 | 1> 
<1 | 1 | 0> 
<1 | 1 | 1> 
<1 | 1 | 2> 

<1 | 0 | 1> 

<2 | 0 | 2> 
<2 | 1 | 1> 
<2 | 1 | 3> 

<2 | 0 | 2> 

<3 | 0 | 3> 
<3 | 1 | 2> 
<3 | 1 | 3> 
<3 | 1 | 4> 

<3 | 0 | 3> 

<4 | 0 | 4> 
<4 | 1 | 3> 
<4 | 1 | 4> 

<4 | 0 | 4> 

Table 3.9 The matrix elements in SO3 symmetry needed for the calculation of 2p x-ray 
absorption. Boldface matrix elements apply to a 3d0 configuration. 

  
Table 3.14 gives all matrix element calculations that are possible for 3dN→2p53dN+1 
transitions in SO3 symmetry for J-values up to 4.  
 
We will use the transitions 3d0→2p53d1 and 3d8→2p53d9 as examples. 3d0 has a 1S0 
ground state with only a J=0 symmetry state. This limits the calculation for the ground 
state spectrum to only one ground state, one transition and one final state matrix 
element, i.e. <0 | 1 | 1>. 3d8 has a 3F4 ground state. This implies that there are two 
different matrix elements that have to be calculated <4 | 1 | 3> and <4 | 1 | 4>, as 
we have seen in chapter 3. 
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We are now going to apply the SO3→Oh branching rules to these tables. 
  

General calculation 3dN → 2p53dN+1 in Oh symmetry 
Initial State Transition Final State 

<A1 | A1 | A1> <A1 | T1 | T1> <A1 | A1 | A1> 

<T1 | A1 | T1> 

<T1 | T1 | A1> 
<T1 | T1 | T1> 
<T1 | T1 | E> 
<T1 | T1 | T2> 

<T1 | A1 | T1> 

<E | A1 | E> 
<E | T1 | T1> 
<E | T1 | T2> 

<E | A1 | E> 

<T2 | A1 | T2> 

<T2 | T1 | T1> 
<T2 | T1 | E> 
<T2 | T1 | T2> 
<T2 | T1 | A2> 

<T2 | A1 | T2> 

<A2 | A1 | A2> <A2 | T1 | T2> <A2 | A1 | A2> 

Table 3.10 The matrix elements in Oh symmetry needed for the calculation of 2p x-ray 
absorption. Boldface matrix elements apply to a 3d0 configuration. 

In octahedral symmetry one has to calculate five matrices for the initial and final 
states and thirteen transition matrices. Note that this is a general result for all even 
numbers of 3d electrons, as there are only these five symmetries in Oh symmetry. The 
case of an odd number of electrons will be described below. In the 3d0 case, the 
ground state branches to 1A1, with total symmetry A1xA1=A1. This again limits the 
calculation to only one transition matrix <A1|T1|T1>. We have seen this in the ora 
outputfiles that contain the seven lines of the <A1|T1|T1> transition at the end. In the 
3d8 case the ground state is 3A2, which in total symmetry yields a T2 ground state. 
Using the table above, this implies that four dipole matrix elements must be calculated 
for the ground state <T2 | T1 | T1>, <T2 | T1 | E>, <T2 | T1 | T2> and <T2 | T1 | A2>.  
 
These rules can also be found in the als5ni2.ora outputfiles. If we look at the file the 
program describes all triads that are calculated: 
CALCULATIONS for ACTOR:PLANE           TRANSI           

  
       CALCULATING MATRIX for TRIAD  5  (  0+   1-   1- 0)  (4*7) 

       MATRIX HAS 21 ZERO, 7 REAL and 0 COMPLEX ELEMENTS 

  
       CALCULATING MATRIX for TRIAD 17  (  1+   1-   0- 0)  (4*2) 

       MATRIX HAS 5 ZERO, 3 REAL and 0 COMPLEX ELEMENTS 

  
       CALCULATING MATRIX for TRIAD 18  (  1+   1-   1- 0)  (4*7) 

       MATRIX HAS 19 ZERO, 9 REAL and 0 COMPLEX ELEMENTS 

  
       CALCULATING MATRIX for TRIAD 19  (  1+   1-   2- 0)  (4*5) 

       MATRIX HAS 14 ZERO, 6 REAL and 0 COMPLEX ELEMENTS 

  
       CALCULATING MATRIX for TRIAD 20  (  1+   1-  ^1- 0)  (4*8) 

       MATRIX HAS 21 ZERO, 11 REAL and 0 COMPLEX ELEMENTS 
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       CALCULATING MATRIX for TRIAD 29  (  2+   1-   1- 0)  (5*7) 
       MATRIX HAS 23 ZERO, 12 REAL and 0 COMPLEX ELEMENTS 

  

       CALCULATING MATRIX for TRIAD 30  (  2+   1-  ^1- 0)  (5*8) 
       MATRIX HAS 27 ZERO, 13 REAL and 0 COMPLEX ELEMENTS 

  

       CALCULATING MATRIX for TRIAD 42  ( ^1+   1-   1- 0)  (6*7) 
       MATRIX HAS 27 ZERO, 15 REAL and 0 COMPLEX ELEMENTS 

  

       CALCULATING MATRIX for TRIAD 43  ( ^1+   1-   2- 0)  (6*5) 
       MATRIX HAS 21 ZERO, 9 REAL and 0 COMPLEX ELEMENTS 

  

       CALCULATING MATRIX for TRIAD 44  ( ^1+   1-  ^1- 0)  (6*8) 
       MATRIX HAS 30 ZERO, 18 REAL and 0 COMPLEX ELEMENTS 

  

       CALCULATING MATRIX for TRIAD 45  ( ^1+   1-  ^0- 0)  (6*3) 
       MATRIX HAS 9 ZERO, 9 REAL and 0 COMPLEX ELEMENTS 

  

       CALCULATING MATRIX for TRIAD 50  ( ^0+   1-  ^1- 0)  (1*8) 

       MATRIX HAS 3 ZERO, 5 REAL and 0 COMPLEX ELEMENTS 
 

One finds that triads 42, 43, 44 and 45 have a T2 (^1+) initial state. These are the 
important matrices for Ni2+ calculations.  
 
Later in the als5ni2.ora the transformed matrices are given for these four triads. For 
example for triad 42, the file yields: 
TRANSFORMED MATRIX for TRIAD 42  ( ^1+   1-   1- 0) (6*7)  DIM :3:3:3   ACTOR 

PLANE            
  

       ---- MATRIX ----      PRINTTRANS       

  
 BRA/KET :   852.903   854.301   855.088   855.312   856.419   871.640   873.099 

-------------------------------------------------------------------------------- 
 -2.57243:  0.084753  0.000524  0.073496  0.054465  0.000005  0.139178  0.005166 
 -1.42076:  0.010636  0.028672  0.181098  0.000208  0.040343  0.069081  0.074203 

 -0.62929:  0.013535  0.044253  0.100561  0.027063  0.059448  0.003079  0.088162 

  0.39181:  0.001357  0.004753  0.002328  0.047212  0.190545  0.031137  0.078262 
  0.88614:  0.012572  0.029788  0.082503  0.002168  0.033906  0.000366  0.140053 

  1.96893:  0.000184  0.001708  0.001732  0.012048  0.088378  0.022026  0.069046 
 
This are the dipole matrix elements for the <T2 | T1 | T1> transition. Its contribution to 
the spectral shape is given by those transitions from the lowest energy state, i.e. the 
line with the energy –2.57243. Using the same method as described in chapter 3, one 
can actually print individually all four triads of the Ni2+ calculation. 
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The file als5ni2t2.plo plots all four different transition matrix elements, as given below. 
The file als5ni2t2.plo looks like: 
postscript als5ni2t2.ps    

landscape    

energy_range 850 880    
columns_per_page 2 

rows_per_page 2 

frame_title Ni 2pXAS 
lorentzian 0.2 999. range 0 860 

lorentzian 0.4 999.   range 860 999 

gaussian 0.25 
frame_title GROUND STATE ALL 

old_racah als5ni2.ora 

frame_title T2 to T1 
spectrum fstate 1- 

frame_title T2 to E 

spectrum fstate 2- 
frame_title T2 to T2 

spectrum fstate ^1- 

frame_title T2 to A2 
spectrum fstate ^0- 

end 
The important command lines are the line old_racah als5ni2.ora, that reads the correct 
outputfile. The line spectrum fstate 1- calculates the spectral shape with the limitation 
that only those final states with 1- symmetry (=T1) have been included. 

 
These four figures give the four individual matrix elements for the Ni2+ calculation in 
octahedral symmetry. In practise, one always observes the addition of these four 
spectra. It can also be useful to compare the spectrum of the ground state with the 
spectra of excited states. In the calculation of the TSD we found that the ground state 
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has T2 symmetry, while four (nearly) degenerate states related to 3T2 symmetry are 
found at 1.0 eV higher energy. One can plot all these spectra with the file als5ni2g.plo. 
This file is equivalent to the final state calculation. A difference is the parity of the 
initial state, which is positive. This implies that one has to give a plus sign to the 
symmetries, instead of a minus sign, for example spectrum istate 1+. The figure below 
gives the ground state result for the Ni2+ spectrum, plus three excited states, for 
respectively T1, E and A2 symmetry, all part of the 3T2 state at 1.12 eV above the 
3A2 ground state. 

 
 
 
 
 
In case of a Ni2+ ion in atomic symmetry, it turned out that the inclusion of 3d spin-
orbit coupling was important. Below we compare the atomic results with the crystal 
field results concerning the inclusion of the 3d spin-orbit coupling. The file als5ni2ls.plo 
combines the atomic spectra with the crystal field spectra. 
 
The figure below clearly shows that the influence of the 3d spin-orbit coupling is large 
for a Ni2+ ion in spherical symmetry, while it is small for a Ni2+ ion in cubic 
symmetry. The reason is that for an atom, the 3F4 ground state is made degenerate 
with the 3F3 and 3F2 states. In cubic symmetry, the 3A2 ground state is not split by 
the 3d spin-orbit coupling, and another important factor is that the energy difference 
to the next state is over 1.0 eV. Although the spectra of cubic Ni2+ look rather similar 
with and without 3d spin-orbit coupling, they are not identical. One can check this by 
exporting the data to an external data analysis program (later more how to do this), 
but the plotting program has also the option to plot spectral differences. The file 
als5ni2ls2.plo plots the spectrum with 3d spin-orbit coupling (bottom) and also the 
difference with the spectrum without 3d spin-orbit coupling. A significant difference is 
observed. With good experimental data quality, one could use these calculations to 
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check whether the 3d spin-orbit coupling should be switched off or on, for example 
from the L3 and L2 peak ratios. In other systems, for example Co2+ and Cr4+, the 
role of the 3d spin-orbit coupling is much more significant, as will be discussed below. 
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The ground states of 3dN systems 
 
The ground state of a 3d8 configuration in Oh symmetry always remains 3A2. The 
reason is clear if one compares these configurations to the single particle description of 
a 3d8 configuration. In a single particle description a 3d8 configuration is split by the 
cubic crystal field into the t2g and the eg configuration, following the branching rules 
from table 3.6. Having found these configurations, one adds the eight 3d electrons 
one-by-one to these configurations. The t2g configuration has the lowest energy and 
can contain six 3d electrons. The remaining two electrons are placed in the eg 
configuration, where both have a parallel alignment according to Hunds rule. The 
result is that the overall configuration is t2g

6eg(up)2. This configuration identifies with 
the 3A2 configuration.  

 
 

Figure 3.1 The splitting of a single 3d-electron under influence 
of the cubic crystal field D and the Stoner exchange 
interaction J. A second electron is indicated with an empty 
arrow to indicate the energy effects. 

Figure 3.3 shows the sp

 3d9 are given in Oh symmetry for all possible high-

sym ns 

litting of a 3d configuration into an eg and a t2g configuration. 
Both configurations are further split by the Stoner exchange splitting J. The Stoner 
exchange splitting J is given as a linear combination of the Slater-Condon parameters 
as J=(F2+F4)/14. The Stoner exchange splitting is an approximation to the effects of 
the Slater-Condon parameters and in fact a second parameter C, the orbital 
polarisation, can be used in combination with J. The orbital polarisation C is given as 
C=(9F2-5F4)/98. Often this orbital polarisation is omitted from single particle 
descriptions. In that case the multiplet configuration 3A2 is not exactly equal to the 
single particle configuration t2g

6eg(up)2. We assume for the moment that the effect of 
the orbital polarisation will not modify the ground states. Then one can use figure 3.2 
to show that the ground states of 3dN configurations are those as given in table 3.10. 

 The configurations 3d0 to
spin (HS) and low-spin (LS) states. The third column gives the HS term 
bols and the last column the LS term symbols. The fourth and fifth colum

give the respective occupations of the t2g and eg orbitals. 
und HS Ground HS Ground State LS Ground State LS Ground

State 
in SO3 

State in Oh in Single particle 
models 

in Single particle 
models 

State in Oh 

1S0 - - 
3d1 2

 t2  D3/2
2T2 g+

1 - - 
3d2 3F2 

3T1 t2g+
2 - - 

3d3 4F3/2 
4A2 t2g+

3 - - 
3d4 5D0 

5E t2g
3 1 t2g+ -

1 3
+  eg+

3 t2g T1 
3d5 6S5/2 

6A1 t2g+
3 eg+

2 t2g+
3 t2g-

2 2T2 
3d6 5D2 

5T2 t2g
3 1 +  eg+

2 t2g- t2g+
3 t2g-

3 1A1 
3d7 4F9/2 

4T1 t2g+
3 eg+

2 t2g-
2 t2g

3 1 +  t2g-
3 eg+

2E 
3d8 3F4 

3A2 t2g+
3 eg+

2 t2g-
3 - - 

3d9 2
 t2g

3 1 - D5/2
2E +  eg+

2 t2g-
3 eg- - 

Conf. Gro  

3d0 1A1 - 
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Table 3.10 shows that r the c nf ra n d  3d5, 3d6 nd 3d7 there are two 

o  

he transition from high-spin top low-spin ground states is determined by the cubic 

f ce on e 

 fo o igu tio s 3 4,  a
possible ground state configurations in Oh symmetry. A high-spin ground state that 
originates from the Hunds rule ground state plus a low-spin ground state for which 
first all t2g levels are filled. One can directly relate the symmetry of a configuration to 
the partly filled sub-shell in the single particle model. A single particle configuration 
with one t2g electron has T2 symmetry, two t2g electrons imply T1 symmetry and one eg 

electron implies E symmetry. If the t2g electr ns are filled and the eg electrons (of the
same spin) are empty the symmetry is A2. Finally, if both the t2g and eg states (of the 
same spin) are filled the symmetry is A1. The nature of the ground state is important, 
as we will show below that E symmetry states are susceptible to Jahn-Teller distortions 
and T1 and T2 symmetry states are susceptible to the effects of the 3d spin-orbit 
coupling.  
 
T
crystal field 10Dq and the exchange splitting J. The exchange splitting is present for 
every two parallel electrons. Table 3.10 gives the high-spin and low-spin occupations 
of the t2g and eg spin-up and spin-down orbitals t2g+, eg+, t2g- and eg-. The 3d4 and 3d7 
configuration dif er by one t2g versus eg electron hen  e tim the crystal field 
splitting D. The 3d5 and 3d6 configurations differ by 2D. The exchange interaction J is 
slightly different for egeg, egt2g and t2gt2g interactions and column 5 of table 3.11 
contains the overall exchange interactions. The last column can be used to estimate 
the transition point. For this column the exchange splittings were assumed to be equal, 
yielding the simple rules that for 3d4 and 3d5 configurations high-spin states are found 
if the crystal field splitting is less than 3J. In case of 3d6 and 3d7 configurations the 
crystal field value should be less than 2J for a high-spin configuration. Because J can 
be estimated as 0.8 eV, the transition points are approximately 2.4 eV for 3d4 and 3d5, 
respectively 1.6 eV for 3d6 and 3d7. In other words 3d6 and 3d7 materials have a 
tendency to be low-spin compounds. This is particularly true for 3d6 compounds 
because of the additional stabilising nature of the 3d6 1A1 low spin ground state.  

Conf. High-Spin Low-Spin 10Dq Exchange J/D 

 
 

(D) (J) 
3d t2g+  eg+  t2g+  t2g-  1D 3 4 3 1 3 1 3Jte 
3d5 t2g+

3 eg+
2 t2g+

3 t2g-
2 2D 6Jte tt ~3 +Jee-J

3d6 t2g   t 1 +
3 eg+

2
2g- t2g+

3 t2g-
3 2D 6Jte+Jee-3Jtt ~2 

3d7 t2g+
3 eg+

2 t2g-
2 t2g

3 t  e 1 1D + 2g-
3

g+ 3Jte+Jee-2Jtt 2 

Table 3. ow ion e 3d r the 
4 7 d 

we 

11 The high-spin and l -spin distribut  of th  electrons fo
configurations 3d  to 3d . The fourth column gives the difference in crystal fiel
energy, the fifth column the difference in exchange energy. For the last column, 
have assumed that Jte~Jee~Jtt=J. 
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The effect of the 3d spin-orbit coupling 
 
As discussed above the inclusion of 3d spin-orbit coupling will bring one to the 
multiplication of the spin and orbital moments to a total moment. In this process one 
loses the familiar nomenclature for the ground states of the 3dN configurations. For 
example the ground state of NiII in octahedral symmetry is in total symmetry referred 
to as T2 and not as 3A2. In total symmetry also the spin moments are branched to the 
same symmetry group as the orbital moments, yielding for a 3A  ground state an 
overall ground state of T

2

1⊗A2=T2. It turns out that in many cases it is better to omit 
the 3d spin-orbit coupling because it is 'quenched', for example by solid state effects. 
This has been found to be the case for CrO2. A different situation is found for CoO, 
where the explicit inclusion of the 3d spin-orbit coupling is essential for a good 
description of the 2p x-ray absorption spectral shape. In other words 2p x-ray 
absorption is able to determine the different role of the 3d spin-orbit coupling in 
respectively CrO2 (quenched) and CoO (not quenched).  
 
Table 3.13 gives the spin-projection to Oh symmetry. The ground states with an odd 
number of 3d electrons do have a ground state spin moment that is half-integer. 
These half-integer configurations have not been included in the discussion of the 
character tables discussed above and can be found elsewhere.. Table 3.13 shows that 
the degeneracy of the overall symmetry states is often not exactly equal to the spin 
number as given in the third column. For example the 3T1 ground state is split into four 
configurations, not three as one would expect. If the 3d spin-orbit coupling is small 
(and if no other state is close in energy), two of these four states are quasi-degenerate 
and one finds essentially three states. This is in general the case for all situations. 
Note that the 6A1 ground state of 3d5 is split into two configurations. These 
configurations are degenerate as far as the 3d spin-orbit coupling is concerned. 
However because of differences in the mixing of excited term symbols a small energy 
difference can be found. This is the origin of the small but non-zero zero field splitting 
in the EPR analysis of 3d5 compounds. 

Conf. Ground 
State 
in SO3 

High-Spin 
Ground 

State in Oh 

Spin in Oh Deg. Overall Symmetry in 
Oh 

3d0 1S0 
1A1 A1 1 A1 

3d1 2D3/2 
2T2 U1 2 U2 + G 

3d2 3F2 
3T1 T1 4 E+T1+T2+A1 

3d3 4F3/2 
4A2 G 1 G 

3d4 5D0 
5E 
3T1 

E + T2 
T1 

5 
4 

A1+A2+E+T1+T2 
E+T1+T2+A1 

3d5 6S5/2 
6A1 
2T2 

G+U2 
U1 

2 
2 

G+U2 
G+U2 

3d6 5D2 
5T2 
1A1 

E+T2 
A1 

6 
1 

A1+E+T1+T1+T2+T2 
A1 

3d7 4F9/2 
4T1 
2E 

G 
U1 

4 
1 

U1+U2+G + G 
G 

3d8 3F4 
3A2 T1 1 T2 

3d9 2D5/2 
2E U1 1 G 
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Table 3.12 The branching of the spin-symmetry states and its consequence on the 
states that are found after the inclusion of spin-orbit coupling. The fourth column gives 
the spin-projection and the fifth column its degeneracy. The last column lists all the 
symmetry states after inclusion of spin-orbit coupling. 

 

Figure 3.2. The Tanabe-Sugano diagram for a 3d7 configuration in Oh symmetry. 

Figure 3.4 shows the Tanabe-Sugano diagram for a 3d7 configuration in Oh symmetry. 
Only the excitation energies from 0.0 to 0.4 eV are shown to highlight the high-spin 
low-spin transition at 2.25 eV and also the important effect of the 3d spin-orbit 
coupling. It can be observed that the atomic multiplet spectrum of CoII has a large 
number of states at low energy. All these states are part of the 4F9/2 configuration that 
is split by the 3d spin-orbit coupling. After applying a cubic crystal field, most of these 
multiplet states are shifted to higher energies and only four states remain at low 
energy. These are the four states of 4T1 as indicated in table 3.13. These four states all 
remain within 0.1 eV from the U1 ground state. That this description is actually correct 
has been shown in detail for the 2p x-ray absorption spectrum of CoO(de Groot 1991), 
which has a cubic crystal field of 1.2 eV. At 2.25 eV the high-spin low-spin transition is 
evident. A new state is coming from high energy and a G-symmetry state replaces the 
U1 symmetry state at the lowest energy. In fact there is a very interesting 
complication: due to the 3d spin-orbit coupling the G-symmetry states of the 4T1 and 
2E configurations mix and form linear combinations. Just above the transition point, 
this linear combination will have a spin-state that is neither high-spin nor low-spin and 
in fact a mixed spin-state can be found.           (MORE SOON, example of CoO 
calculation) 
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Symmetry effects in D4h symmetry 
 
In D4h symmetry the t2g and eg symmetry states split further into eg and b2g 

respectively a1g and b1g. Depending on the nature of the tetragonal distortion either the 
eg or the b2g state have the lowest energy. Table 3.12 shows that all configurations 
from 3d2 to 3d8 have a low-spin possibility in D4h symmetry. Only the 3d2 configuration 
with the eg state as ground state does not posses a low-spin configuration. The 3d1 
and 3d9 configurations contain only one unpaired spin thus they have no possibility to 
obtain a low-spin ground state. It is important to notice that a 3d8 configuration as for 
example found in NiII and CuIII can yield a low-spin configuration. Actually this low-spin 
configuration is found in the trivalent parent compounds of the high TC 
superconducting oxides(Hu and others 1998). The D4h symmetry ground states are 
particularly important for those cases where Oh symmetry yields a half-filled eg state. 
This is the case for 3d4 and 3d9 plus low-spin 3d7. These ground states are unstable in 
octahedral symmetry and will relax to, for example, a D4h ground state, the well-known 
Jahn-Teller distortion. This yields the CuII ions with all states filled except the 1A1g-
hole.  
 

General calculation 3dN → 2p53dN+1 in D4h symmetry 
Initial State Transition Final State 

<A1 | A1 | A1> 
<A1 | E  | E > 
<A1 |A2 | A2> 

<A1 | A1 | A1> 

<B1 | A1 | B1> 
<B1 | E  | E > 
<B1 |A2 | B2> 

<B1 | A1 | B1> 

<E  | A1 | E > 

<E | E  | A1> 
<E | E  | A2> 
<E | E  | B1> 
<E | E  | B2> 
<E |A2 | A2> 

<E | A1 | E> 

<B2 | A1 | B2> 
<B2 | E  | E > 
<B2 |A2 | B1> 

<B2 | A1 | B2> 

<A2 | A1 | A2> 
<A2 | E  | E > 
<A2 |A2 | A1> 

<A2 | A1 | A2> 

Table 3.13 The matrix elements in D4h symmetry needed for the calculation of 2p x-ray 
absorption. Boldface matrix elements apply to a 3d0 configuration. 
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Ground State in Single particle models in D4h symmetry 
Conf. High-Spin eg < b2g High-Spin b2g < eg Low-Spin eg < b2g Low-Spin b2g < eg 
3d1 2 eg+ 2 b2g+  -  - 
3d2 3 eg+

2 3 b2g+ eg+  - 1 b2g+ 
   b2g- 

3d3 4 eg+
2b2g+ 4 b2g+ eg+

2 2 eg+
2 

   eg- 
2 b2g+ eg+ 
   b2g- 

3d4 5 eg+
2 b2g+a1g+ 5 b2g+ eg+

2b1g+ 1 eg+
2 

   eg-
2 

3 b2g+ eg+
2 

   b2g- 
3d5 6 eg+

2 b2g+a1g+b1g+ 6 b2g+eg+
2b1g+a1g+ 2 eg+

2 b2g+ 
   eg-

2 
2 b2g+ eg+

2 

   b2g- eg- 
3d6 5 eg+

2 b2g+a1g+b1g+  
   eg- 

5 b2g+ eg+
2b1g+a1g+  

   b2g- 
1 eg+

2 b2g+ 

   eg-
2 b2g- 

1 b2g+ eg+
2   

   b2g- eg-
2 

3d7 4 eg+
2b2g+a1g+b1g+ 

   eg-
2 

4 b2g+eg+
2b1g+ a1g+  

   b2g-eg- 
2 eg+

2 b2g+ a1g+ 

   eg-
2 b2g- 

2 b2g+ eg+
2 b1g+

 

   b2g- eg-
2 

3d8 3 eg+
2 b2g+a1g+b1g+ 

   eg-
2 b2g- 

3 b2g+eg+
2b1g+ a1g+ 

   b2g-
1 eg-

2 
1 eg+

2 b2g+ a1g+ 
eg-

2 b2g- a1g- 
1 b2g+ eg+

2 b1g+
 

   b2g- eg-
2 b1g-

 

3d9 2 eg+
2b2g+a1g+b1g+  

   eg-
2 b2g-a1g- 

2 b2g+eg+
2b1g+a1g+  

   b2g-eg-
2b1g- 

 -  - 

Table 3.14 The configurations 3d1 to 3d9 are given in D4h symmetry for all high-spin 
and low-spin possibilities for the two cases that the eg energy is lowest and that the 
b2g energy is lowest. The number in boldface indicates the spin-degeneracy 2S+1 for 
all configurations. 
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