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A large number of full CI calculations has been performed in order to obtain an accurate
representation of the potential energy surface of the molecular ion H;" in its lowest triplet
state. It is found that the surface is very flat, so that the molecule is very floppy and has a great
likelihood of tunneling between the three symmetry-related minima. The potential is expanded
in terms of elements of Wigner D matrices depending on hyperspherical angles. An extensive
discussion of the Smith-Whitten hyperspherical coordinates, used in this work, is given.

I. INTRODUCTION

The molecular ion H;" in its lowest singlet state has
been known to exist since the beginning of this century. Itisa
rather rigid molecule with the shape of an equilateral trian-
gle. Since Oka measured one of its vibrational bands in
1980," interest in the molecule has been lively, not in the least
because of its astrophysical importance. See, e.g., a paper by
Meyer, Botschwina, and Burton? for a review on the experi-
mental and theoretical work on this ion. These authors have
performed an extensive set of ab initio calculations on the
potential energy surface (PES) and the rovibrational spec-
trum of H," . Tennyson and Sutcliffe’ used recently the older
potential of Schinke, Dupuis, and Lester” in their calculation
of the high rotational states of the isotopomer H,D " in the
electronic singlet state. Recent work by Carney et al.” is on
the vibrational states of the isotopomers of singlet H." .

The molecular ion H," in its lowest electronic triplet
state has attracted much less attention, mainly because no
definite observation of its existence has been made to date.
However, there are indications that it may exist in interstel-
lar space and plasmas.® In order to make a definite statement
about its existence, it is necessary to obtain its rovibrational
“fingerprints.” Since the calculation of molecular spectra of
light systems has made enormous progress in the past dec-
ade, the prediction of such fingerprints by ab initio methods
is now within reach.

The computation of the rovibrational spectra is usually
based on the Born-Oppenheimer approximation, which di-
vides the problem naturally into two steps. The first step
consists of the solution of the electronic structure problem
for a number of well-chosen nuclear geometries. These geo-
metries must be chosen such that they allow a good—prefer-
ably an analytic—fit of the surface. The second step is the
solution of the nuclear motion problem on the surface ob-
tained in the first step.

This paper is concerned with the first step in the Born—
Oppenheimer approximation: the generation of a PES that
can be used in the solution of the nuclear motion problem.
To that end more than 400 points on the PES of triplet H,'
have been computed by the standard LCAO full CI tech-
nique. (Note that full CI for a two-electron system is the
same as SDCI, i.e., configuration interaction based on singly
and doubly excited states.) An analytic fit based on 240
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points, systematically chosen by two numerical quadratures,
is presented.

Although no computation of the full PES has been pre-
sented before, two different sets of @b initio computations on
a number of geometries have appeared. Schaad and Hicks’
found the ion to have an equidistant collinear structure and
to be very weakly bound with respect to dissociation into an
H atom and an H;" molecular ion. Their results were later
confirmed by the more accurate calculations of Ahlrichs,
Votava, and Zirz."

These earlier calculations bring to light that the poten-
tial energy surface of H;" in the triplet state is very flat, so
that the molecule is very floppy. Although the two papers
just mentioned both gave interpretations of the vibrational
spectrum that were based on a harmonic model and a single
equilibrium structure, we believe that the molecule is not
sufficiently rigid to warrant such an approach. In particular,
we shall show that the energy barriers between the three
structures H.—H -H;, H -H,-H;, and H,~H ,-H, are so low
that the protons tunnel easily between these symmetry-relat-
ed minima. In the terminology of Longuet-Higgins® all the
permutations of the protons are “feasible.” Thus, it is neces-
sary to treat the protons evenhandedly in the fit of the sur-
face and the ensuing nuclear motion calculations.

A totally symmetric potential energy surface can be de-
scribed in terms of a coordinate system first proposed by
Smith'” for the motion of three particles in a plane. Later
Whitten and Smith'' have extended this system to 3D mo-
tion. Basically, the coordinates are a hyperspherical form of
the well known Jacobi coordinates.'> Hyperspherical co-
ordinates have a longer tradition in nuclear physics'*'* than
in molecular physics, although also in the latter field they
have found numerous applications,'>* especially in the
study of reactive three particle scattering. To our knowledge
in all this work so far one has employed only model poten-
tials. The present paper is an attempt to fit systematically an
ab initio potential in terms of functions of the hyperspherical
coordinates.

The Smith-Whitten coordinate system has been thor-
oughly discussed and somewhat modified by Johnson.'® In
the analytic fit of the surface we shall use a coordinate system
that coincides to a large extent with Johnson's, but since the
full use of permutation symmetry is important for us in keep-
ing the required number of ab initio calculations to a mini-
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mum, we give an alternative derivation of the necessary for-
mulas that brings out more the role of permutation
symmetry. Further we shall show that the coordinate system
is nonorthogonal, i.e., it has a nondiagonal metric tensor,
and discuss the choice of an appropriate set of expansion
functions, which then is used in the representation of the
PES. The fitted surface is presented in terms of expansion
coefficients as well as contour plots.

Il. THE SMITH-WHITTEN HYPERSPHERICAL
COORDINATES

In this section we define the coordinate system used in
the fit of the potential energy surface (PES). The main pur-
pose of this section is to give a self-contained account of the
Smith-Whitten hyperspherical coordinates'™'! and the way
they behave under permutations of the particles. Although
much of the theory presented in this and the next section can
be found scattered in the literature,'*'""'*?* it is embedded
in many different formalisms and written in so many nota-
tions, that it is impossible to rely on a few references in the
explanation of our representation of the PES.

The equations defining the hyperspherical coordinates
can be presented very concisely in matrix language. To that
end we write the matrices of proper, respectively improper,
rotations as

cos @ — sina
R(w): = ( ) ).

sinw Ccosw e
S(w):=(c‘os w sinw )

sin@w — CoS @

By a suffix we indicate a rotation axis, thus for instance a
proper rotation around the z axis has the 3 X 3 matrix:

R{w) 0)
0" 1
In an equivalent way the matrices R, (@), S, (w), etc. are
defined, which are matrices that properly, respectively im-
properly, rotate two axes, with a suffix indicating the third

{invariant) axis.

Consider the coordinate (column) vectors x; of the pro-
tons in an arbitrary space-fixed frame. Since we are dealing
with identical particles, it is convenient to assume that they
have unit mass. Furthermore, we take the origin of the
space-fixed frame in the center of mass of the system, so that
X, + X5 + x; = 0. This restriction reduces the configuration
space from the Euclidean space R’ to its linear subspace R®.
Defining the 3 3 matrix X by X: = (x,,X,,x;), we can in-
troduce Jacobi coordinates y;. This is done by means of a
matrix T acting on the right of X. It is convenient to normal-
ize the Jacobi coordinates, so that T becomes orthogonal,
thus,

R:(w)::( 2)

Y=(y,,¥:0):=XT, (3a)
where
Vi 0 !
r=[-1 1 1) (3b)
-Ji =1 i

The vectors {y, @y, constitute the configuration space R®.
If X is of rank 1, i.e., the particles lie on a straight line, the
two Jacobi vectors are linearly dependent.

The matrix X spans a representation of the permutation
group S, as follows:

P(X..XI,K_;) = (xp(lJ’x,mZ)!xpth) f— XPv PES{ ] (4)
where P is a 3 X 3 matrix with unity in the position [p(),i],
i=1,2,3, and zeros elsewhere. The matrix T gives a decom-
position of the rep of S, spanned by {x, } into the irreducible
representations (irreps) [2,1] and [3] of §;,
D21 (P) 0 )

0" pipy/
By virtue of the choice of T this is a reduction into standard
Young-Yamanouchi irreps®* where, of course, D'*! (P)
= 1. The even permutations in theirrep [2,1] are represent-
ed by R(k37), k=0,1,2, with

(D=k=0, (123)=k=1, (132)=k=2.

An odd permutation has the matrix S(k%7) with k given by

(23)=k=0, (12)=k=1, (13)—=k=2.

In order to introduce the hyperspherical coordinates we
need the diagonal matrix t defined thus

PY=YT_'P’I'=Y( (5)

—_ sin| — 0 0
cos( 5 -+ sin 5
t(46): = 0 cos(ﬁ) - sin(-a—) 0
2 2
0 0 0

(6)
Below it will be used that

0
S(0) 0) 7

, (1 0 :
t(im_z(of 0) e 9( 0" o)
The six hyperspherical coordinates needed to cover R®
are designated by r, a, B, ¥, 8, and ¢ and defined by

Y=:[Li R, ()R, (AR, INTUOR. (14) . (8)
N

The fact that the angle ¥ appears here with a factor 1/2 is
explained in the Appendix where y, #, and ¢ are shown to be
simply related to SU(2) Euler angles. We shall show that the
hyperspherical coordinates can be solved uniquely from Eq.
(8) (except for a few exceptional points) provided we im-
pose the following constraints:

r>0, O<a<2m, O0<f<w, O<y<dm, 0<0<im,

0<d<2m. (9)
The hyperradius r is obtained thus,

Tr[Y'Y] = [y, + |ya[* = 7 Tr[t(46)*] = 7*, (10)

where we cyclically permuted the orthogonal matrices under
the trace. From Egs. (5) and (10) it is immediately trans-
parent that 7 is invariant under permutations. Further, we
see that this coordinate is the radius of the sphere S° in the
space R® of the Jacobi vectors. The remaining five coordi-
nates give a coordinate system for this hypersphere. In fact,
57 is a (Riemann) manifold, and the hyperspherical angles
form a single chart. Strictly speaking, we need more than one
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chart to cover the whole manifold, including the exceptional
points, but we forego these mathematical subtleties.

Next we consider simultaneously a, 8, and & and to that
end we rewrite Eq. (8),

R,(—AR.(—a)Y =—R,(INtUORUS) . (11)
12
N
On the left-hand side we find a rotation of the Jacobi vectors
y, and y,. We can compute the vector product of these two
vectors

ViXys=[h[2x, — (x; + x3) | X [x;, — %3] (12a)
:V‘T[x,x’xg+x3xx3+x_;::-:,x,] (12b)
—:N. (12¢)

The vector N is normal to the plane of the particles, and Eq.
(12b) shows that N transforms as the antisymmetric irrep
[17] of ;. The vector product of the first two columns of
t(1#)R (1) equals (0,0,cos &) = Using the well-known re-
sult that a vector product transforms under proper rotations
as a vector and equating the vector products obtained from
the first two columns of the left- and right-hand sides of Eq.
(11), we obtain

0
R, (—BR.(—a)N=IFR. (] ©
cos 0
0
=4 0 || (13)
cos

After expressing the normal N in spherical polar coordinates
N, 8y, &, we can easily verify that fore = & and f = &,
Eq. (13) becomes

4] 0
0 |=1 2l 0 ; (14)
N cos &

where N=|N|. So, @ and / are the polar angles of N and & is
related to the length of N by

6 = arccos (»2—'}) . (15)

pr
Evidently, 0<a<2m, 0<f<m, 0<f<i7. If y, and y, are lin-
early dependent N = 0 and @ and f are undetermined. This
happens for a linear geometry of the molecule.

Since N changes sign under odd permutations, it is clear
that its polar angles behave under odd permutations as

a—a -+
=R, (@)R,(B)—R,(a)R,(BIR, (7) .

B—m—B (16)
Under even permutations the angles @ and /3 are invariant,
and 6, being derived from X, is invariant under the whole
group S..

The submanifold of §°, characterized by constant @ and
B, is the upper hemisphere of S *, parametrized by y, 6, and ¢,
as is explained in the Appendix. This may be compared with
the usual chart of S, formed by the spherical polars, where
the submanifold of constant longitudinal angle, is the half-
circle parametrized by the colatitude angle.

In order to find an equation for ¢ we consider
Y'Y =|rR.(— ¢)t(0)°R. (14) . (17)
By use of Eq. (7) and by moving the part of this equation

that is independent of & to the left-hand side of Eq. (17), we
obtain for the nonzero 2 x 2 block,

(i(hﬁ:— ¥21*) Yi'¥a )
Yi'¥» _§(|Yt]3_ ¥4
. cos ¢ — sin ¢
:5r51n9(—sin¢ ucosé)' (18)
Hence,
rcosdsinf= |y, |> — |y:|*, (19a)
rsingsinf= —2y,y,, (19h)

and ¢ is determined uniquely in the interval 0<¢$< 2. The
point # = 0 is an exceptional point of the coordinate system,
it corresponds to an equilateral triangle,

With regard to the permutation property of ¢ we ob-
serve that r and @ are invariant and that y, together with y,
spans the irrep [2,1]. Noting that §;=C;,, we recall from
clementary group theory that the pairs (x,p) and
(x* —»*xp) both span the irrep Eof C ,,. Translating this to
the case at hand (x—y,, y—¥,), we find from Eq. (19) that
the pair (cos ¢, — sin ¢) spans [2,1]. More specifically, one
easily derives that, if P: ¢ — o',

(cos &', — sin ¢")

. R(2k%7)  for even P,
= (Eosp, —ein d) S(2k2z) forodd P. (20

The permutation behavior of ¢ is thus simply given by
"= (—1)"(¢ + 2k%), where ( — 1)” is the parity of P.
To evaluate y, finally, we introduce the matrix Z,
(z,22)=Z: =R, ( — B)R.( —a) Y, (21)
so that by Eq. (11),

ZR.(—j¢) =——R.(1)t(}0) . (22)
J
Multiplication of both sides from the right by the matrix
(8 #im)

cos 1 — sin 16 0 0
! 0 cos 18 +sinlf 0O (23)
cos ¢ ) u
0 0 0

and equating the first column on the left- and right-hand side
of the equation thus obtained, we get

cos 1y
sin Jy
0
— cos(4f) —sin(18)

— \|‘2

[z, cos(id) —z, sin(-gcﬁ)] %

(24)
If @ = |7 the matrix t(}6) becomes very simple and we can
solve Eq. (22) directly. By application of L'Hospital’s rule
to Eq. (24) we obtain the same result for € = 7. So, Eq.
(24) gives y on the interval 0< y< 4.

rcos @
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To obtain the permutation property of y we observe that
for odd permutations Eqgs. (16) and (20) give with P: y—9/,

PY =R, ()R, (AR, (m)R, (1 )t(}0)
2

XR,(— b+ 2kx})

— L R.(@)R, (BIR,(— P )tUOR. (4)

V2
XR, (kK3F)R (m), (25)
where we used repeatedly R, (TR, (@)

=R, ( — )R, (7). Furthermore, Eq. (5) reads

PY = :——R, ()R, (AR, (AR, (1S, (k). (26)

R

\ “~
Comparison of the nonzero columns of Egs. (25) and (26)
shows 3 = — 7. In the same way one shows that y is not

affected by even permutations.

In summary, we have described a map of the configura-
tion space R® of three protons with a fixed center of mass to
the domain given by Eq. (9). Given the space-fixed coordi-
nates x,, X, and x5, the consecutive solution of Eq. (10) for
r,Eq. (13) fora, B, and 6, Eq. (19) for ¢, and Eq. (24) for y
shows that this map is everywhere one-to-one, except for the
linear geometry, where a, 3, and y are undefined, and the
equilateral triangle, where &, and hence also y, are undeter-
mined. The angles a, 8, and y specify the orientation of the
system in space, £ and ¢ give the shape of the triangle, and r
distinguishes among similar triangles (r gives the “size” of
the triangle).

The shape of a triangle of given 6 and ¢ can be calculated
by Egs. (3) and (8), however, a shorter route is by the use of
the following well-known expression

X, —x;|*=r[1 —sinOcos(d+8;)], ijk=123,

(27)
where 5, = 0°, §, = 240", and &, = 120" and i#j#k. In the
present formalism one can obtain this formula by perform-
ing the matrix multiplications on the right-hand side of

X"X =1 TR, (1¢)"t(J0)°R, ($)T" (28)

and realizing that |x, —x,|?=(X"X), + (X'X),
— 2(X"X),,. The coordinate r is seen from Eq. (27) to be
the root of the averaged sum of squared lengths of the sides of
the triangle formed by the three particles.

—]

1
i‘: 2 ) .
(0 -2—(1 + cos” f —sin” B cos ¥ sin &)

0 ; sin 3 sin y sin &
g= r
' 0 — cos
5 B
0 0
0 % cos fFcos 0

%(I + cos ¥ sin 8)
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I1l. EXPANSIONS FUNCTIONS

The (8,4) dependence of the potential energy surface
E(r,0,8) can conveniently be described by an expansion in
terms of an orthonormal and complete (in the Hilbert space
sense) set of functions y ,, (8,4),

E(r.0,9) =Y C,.(Nym(6:4) (29)

hm

with

(/2w 2m
C,(r)= J J’ Yo (B.)V*E(r,0,0)w(60,8)d60 dd .
0 (il

(30)

We must, therefore, find functions y,,, that are orthonor-
mal, complete with respect to a certain weight w(f,¢), and
are relatively easy to handle in a dynamics calculation.

An obvious choice of functions are the eigenfunctions of
the nuclear kinetic energy operator expressed in the present
hyperspherical coordinates—or rather, eigenfunctions of
the part of this operator that depends on #and ¢. The kinetic
energy operator is proportional to the Laplace operator, for
which Beltrami derived the following expression in general-
ized coordinates {g, }:

{2 (? 2 a
A=g|m'"?Y —[g|'%g’ —, (31)
; dq, dg,
where
{9.} ={rapBy.6.4},
g'=g; ! (the inverse of the metric tensor),

81" = |det(g) |-

In order to obtain its inverse, it is necessary to compute the
complete metric tensor g, since—as we shall see shortly—
this tensor is nondiagonal. The metric being induced by the
usual metric on R® g is given by

Z 2 ay ap ay ap

= (32a)
B & &, 0q, ag,
T
—Trl‘” ‘9—Y]. (32b)
dg, dq,

It is not difficult to compute d Y/dg,, and it is also not diffi-
cult, but tedious, to compute the traces in Eq. (32b). After
quite some algebra, we find

0 i
4
0 0 it
4
0 —r:cosﬂ 0 L
4 4
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The Jacobian (the root of the determinant of this tensor, the
integration weight) is

jg|“-’=(§) sin Bsin 26 . (33)

It is seen that several off-diagonal elements are nonzero, and
among them also g, . If one were to apply some transforma-
tion to the external angle » and the internal angle &, in order
to orthogonalize these two coordinates, one would find that
the PES depend on four coordinates, rather than on the min-
imum number three. In fact, orthogonal hyperspherical co-
ordinate systems for real vector spaces of arbitrary dimen-
sion are well known (see, e.g., Ref. 25, pp. 302-307), but
they do not give the required separation of the PES into
external and internal coordinates.

It is also tedious to invert g. After several pages of com-
putations of minors we find

=1,
_l+cosysing 2
~ sin’Bcosif P~
g — sin ysind 2

e {ed

g

sinBcos’ @
g — 1 —cosysiné 2

cos> @ -
g7 = — (1 + cos ysinf)cos B 4
sin® 3 cos® 8 r’

34
_cosfsinysinf 4 (%)

72
& sinfBcos’d
e _( 2 B, 4(1 - cos ¥ sin 9)1:0533)3
sin® @ sin’ B cos” @ 7’
4
i
g B
g = _ cos 4
sin?@ '
1 4
gh=———.
sin® 6 r°

The values of g~ ' not shown are zero. Note that metric ten-
sor and its inverse are not block-diagonal (except for r and
&), so that indeed the total tensor must be included in the
inversion.

Substitution of Eqgs. (33) and (34) into Eq. (31) gives
the required kinetic energy (Laplace-Beltrami) operator A.
It can be shown (see Ref. 25, Chap. 15) that A is the only
Casimir operator of the orthogonal group SO(6). Compare
this with SO(3), where there is also one Casimir operator
(the usual angular momentum operator) and recall that the
completeness of the eigenfunctions (the spherical harmon-
ics) of this operator is proved by the Peter—Weyl theorem for
SO(3).?® In the same way as for SO(3) one proves from the
Peter-Weyl theorem for SO(6) that the eigenfunctions of
the angular part of A form an orthogonal basis for the Hil-
bert space L *(S*), consisting of square integrable functions
on the sphere.

In the description of the PES we require functions that
are independent of the external coordinates ¢, /3, and . This
means that only the terms of A, Eq. (31), have to be consid-

ered that depend on @ and ¢. This part of the Laplace-Bel-
trami operator is

v = (i)( 10 nnad o La—) (35)
r/ \sin 260 a8 d6  sin” @ d¢”

Although this operator is similar in appearance to the usual
angular momentum operator, there is the important differ-
ence that sin 20 appears in the expression, rather than sin #.
This arises from the factor sin 26 in the Jacobian, Eq. (33),
and is consistent with the interval of 6, i.e., the weight is
positive on the interval.

The eigenvalue problem of V* can be separated in the
manner, described in text books,”’ yielding the functions
exp(img) in ¢, and for the variable & the equation

4(2)2 L 19 el
r/ lsinf@' a8’ ag’
‘ﬁcﬁyliigfi_nnev=:4nxew, (36)
2 sin” A’

where ': = 26. This is a well-known equation in the theory
of the symmetric top and the representation theory of
SU(2), its solutions are the Wigner d functions
d L 1am(20) with the corresponding eigenvalue
A= —4j(j+ 1)(2/r)% The required expansion functions
are finally (after the replacement {m —m)

2+ 1
T

= [EEL b (02020), (37)
27

where we have made the relation with the Wigner D matrix,
defined in general as

D (aBy): =e " d], (Be ™. (38)

mim'

d :”.:': . (26)61‘2':1‘&

rﬂn ( G‘é) =

The normalization factor introduced in Eq. (37) normalizes
the expansion functions to unity. Indeed, the {y,,, } are or-
thonormal with respect to the weight w(#,4) = sin 26,
which can easily be proved by application of the orthogona-
lity relation for SU(2) [not SO(3), because 0<2d<47]. Be-
cause the functions arise from a basis of L*(S?), they are
complete.

We want to stress that the functions with half-integer j
must be included in order to achieve completeness. This can
be easily shown by considering the simple function cos ¢. It
is readily seen that this function is orthogonal to all y,,, , with
mz# + 1/2, hence half-integer functions are required to de-
scribe cos ¢.

IV. COMPUTATIONAL DETAILS

Each point on the electronic potential energy surface is
computed by the standard LCAO-SCF-SDCI approach.
The molecule H;" being a two-electron system, SDCI is the
same as full CI, so that the choice of a finite dimensional
orbital basis is the major approximation in the calculation.
Asdiscussed in Sec. 11, the PES depends on the hyperspheri-
cal coordinates p: = r/\-"'i &, and ¢. In order to find a reliable
basis we first computed and fitted a part of the surface (p
fixed at 2.5 @, ¢ and ¢ each running over five points) in a
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large basis as a benchmark. This basis is an optimized Gaus-
sian-type orbital (GTO) (10s, 4p, 1d /6s, 3p, 1d) basis. The
quality of this basis may be judged by a computation on the
*3, state of H," at R = 2.0 a,. Our value is 0.1 mhartree
above the exact Born-Oppenheimer value®® — 0.602 634 2
hartree, and 0.3 mhartree below a calculation by Ahlrichs
etal®

Secondly, we have computed and fitted the same part of
the PES with a more modest uncontracted (5s, 3p) GTO
basis. The exponents of the s orbitals are taken from Van
Duijneveldt's compilation,” and those of the p orbitals from
Ref. 4. The smaller basis gives energies on the grid of 25
points that are from 1.5 to 0.9 mhartree above the corre-
sponding energies obtained in the large basis. This difference
in energy is very uniform, and smaller than the errors intro-
duced by the fit procedure.

The benchmark calculation shows that the smaller basis
is quite reliable and since we are interested in a complete
description of the PES, which requires many points, we de-
cided to proceed with the 42-dimensional (5s, 3p) basis. The
energy of H," in this basisis — 0.602 014 7 hartree at a bond
distance of 2.00 a,, and of the H atom itis — 0.499 809 §, so
that the dissociated complex has the energy — 1.101 824 5
hartree.

In order to obtain the PES in the form of the expansion
of Eq. (29), where the basis y,,, isgivenin Eq. (37), we must
calculate the integrals of Eq. (30), which are

(172)m
C”"( ) - 2_/ + 1 j J’ d:‘,,”, ,,,(26)6’ .‘,mldlE(r'g’é)
V 2w
X sin 20d0dé . (39)

Recall from Sec. II that the transposition (2,3) gives the
map ¢— — &. Since the PES E(r,6,4) is symmetric under
this transposition, it follows that sin 2mé drops out and only
the term cos 2m¢ in the exponential function survives the
integration. Furthermore, we may restrict the ¢ integration
to the range 0< ¢<, provided the integral is weighted by a
factor 2. We also saw in Sec. II that even permutations give
the substitution ¢—¢ + k 27/3, which implies that only
those terms cos 2m¢ contribute that satisfy 2m = 3n, where
n is a natural number.

In order to prepare the integral of Eq. (39) for numeri-
cal quadrature we substitute

x=cos 26 and p=cosd (40)
and rewrite the integral, thus,
dx d
Cponpa (1) = 2”“_[ f Glrxy) —2
=7
(41)

where

G(rxp):=d}l), ... larccos(x)]cos|[3n arccos(y)]

~xE [r,.j arccos(x).arccos(y)] ; (42)

The integrals over x and y in Eq. (41) have the range and
weight of, respectively, the Gauss—Legendre and the Gauss-
Chebyshev quadrature.™ Let us denote the grid points in x
by x,, 4 = 1,....N,, and the corresponding weights by w; .

The Gauss—Chebyshev points are denoted by y,,
p=1,.,N,, and in Ref. 30 we find that y, = cos 4, with
é,:= [(2u — 1)/2N, 1. Further we know that for all  the
Gauss-Chebyshev weight is w, = 7/N,. Thus, the integral
in Eq. (41) is approximated by the fOllowing double sum:

wyd i),

C}n/z("):N;T‘ 21+] Z w2 (95)

o A= Tp=1
X cos(3n¢’ru VE(r36,.6,) ,

where 6, : = arccos(x, ). After extensive numerical experi-
mentation the number of points N, in the # direction was
chosen to be eight. Obviously, the larger this number the
better the fit is, but the CI calculations necessary for the
evaluation of E(r, 16,, ¢, ) form a limit on this number.

By the use of permutation symmetry a further reduction
of the sum over g is possible, and to that end we choose the
number of Gauss—Chebyshev points as a multiple of 3:
N, = 3K. Since the PES is invariant under the permutation
(132) we find

(43)

2
E(r\0,.8, . ) = E(r.ge,-, B, + T)

= E(ri0,.4,) (44)

and it follows that the sum over g can be resiricted o
1<p<2K. Likewise from the invariance under the transposi-
tion (12),

E(r-‘lla.n. :05:.\' w1 ) = E(r,%(fi‘,_. o !‘bﬂ ¥ ;{r)
=E(rl0,.4,) . (45)

Realizing that u = 1,....2K runs forwards and 2K — pu + 1
runs backwards on the same grid, we find that the sum over p
can be further restricted to 1< <K. Thegridd,,, i = 1,...K|
covers equidistantly the interval [0°,60°]. In the actual cal-
culations we have chosen K = 5.

In summary, the fitted surface is based on 240 ab initio
points: For six values of p we have computed the energies on
an 8 x 5 grid of 6, ¢ points. The @ values are those belonging
to an 8-point Gauss—Legendre quadrature and the ¢ points
belong to a 15-point Gauss—Chebyshev grid. Because of per-
mutation symmetry only five points have to be calculated on
the latter grid.

Since the electronic wave function calculated on a grid
point depends parametrically on the nuclear coordinates,
the operation of the nuclear permutations on the electronic
wave function is well defined. A permutation yields a wave
function belonging to a symmetry-related point of the poten-
tial energy surface. If the permutations do not coincide with
point group operations, the six electronic wave functions ob-
tained by the permutations are linearly independent. Ac-
cordingly, basis functions for all three irreps of S, can be
projected from a single electronic wave function.

In the second step of the Born-Oppenheimer approxi-
mation we must multiply a protonic wave function that
transforms according to [A ], where [A4] is one of the irreps
of S, with a projected electronic wave function transforming
according to the conjugate irrep [A], in order to satisfy the
Pauli principle for the protons. The protonic wave function
itself contains a spatial and a spin part, which thus must be
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combined to transform according to [A ], which can be any
of the three irreps of S, not just the antisymmetric one.

In the evaluation of the integral in Eq. (39) it is also
necessary to compute the Wigner & functions /) . (5),
0< <. Several recursion relations for these functions can
be found in the literature, but some of these are not suitable
for numerical computation. We have good experience with
the following strategy for evaluating the matrix. If lw <<
we first move this angle to the interval 0<f< |7, which is
possible by virtue of the relation

d,)(r—p)y=(—1)Y""d__(B). (46)

Second, we divide out powers of tan {8 by defining (sup-
pressing j in the notation)

Ly (B):=d,,, (B)tan™ ~"(1B) . (47)

For the function thus defined one derives easily the recursion
relation

r_,_,=cos?(i8)
and

(48)

m Lh—f

from which the first (i.e., with index — /) column can be
computed. The next column is then obtained from

—2jcos B —2m
V2 sin 8

and the remaining columns from

t”"- J+1 = tan(%ﬁ)( )"m. J ¥ (49)

TABLE I. Expansion coefficients C

i

b = [(J—m" + 1)+ m')] "2

(m’— l)COSB — m)lmm. |
sin '

—[(j4+m —)(j—m'+2)]'"2

x[tan(iﬁ)(

X tan’(18)1,, . 2] : (50)

V. RESULTS AND DISCUSSION

As discussed in Sec. IV, we have calculated eight ener-
gies for each value of ¢ with # running over a Gauss—Le-
gendre grid. Because an n-point Gaussian quadrature allows
the integration of a polynomial of order 2n — 1, we can nor-
malize numerically the expansion functions @ /" (6) up
toand including j = 15/2. For this reason we have truncated
the expansion of the PES E(r.0,4), cf. Eq. (29), at this j
value, For a similar reason the ¢ expansion in functions
cos md has been truncated after five terms. Thus the expan-
sion coefficients C,,, (r) are computed for j = 0, 15/2 (1/2)
and m = 0,6 (3/2). They are given in Table I for p: = r/y2

=2,2.5,2.75,3.0, 3.5, and 4.0 a,;.

In Fig. 1 a 3D plot of the fitted surface at p = 2.5 q,, is
presented. Note that this plot shows the roral energy, i.e., the
electronic p/us the nuclear repulsion energy. At a glance we
find a local minimum at the point (90°,60%) in the 6—¢ plane.
[From hereon we shall use the notation (8,4) to specify a
point in this plane.] By the use of Eq. (27) it is readily seen
that this point represents a linear, equidistant, geometry

(r), ¢t Eq. (30), asa function of p=r/v2 a,.

i m 2.0 2.5 2.75 3.0 33 4.0
0 0 —0229994(+1) —02082231(+1) —0.1994100(+1) —0.1916936(+1) —0.1789202(+1) —O0.1688928( - 1)
1 0 0.224 994 4( + ) 0.217039 5( 4+ 0) 0.212077 B( + 0) 0.206 775 3( + 0) 0.195486 8( +0) 0.183 600 6( + 0)

0.108 869 9( + 0)
—0.5048543( — 1)
— 0349063 8( — 1)

0.281 850 5( — 1)
—0.233051 6( — 1)

0.168 753 9( — 1)
—0.887 842 6( — 2)

0.1148144( —1)
—0.778 608 S{ —2)

s 0.102 111 1( + 0)
0 —04079326( 1)
! —0.2980655(— 1)
0 02580713(—1)
~0.194 505 5( — 1)
! 0.138 068 8( — 1)
0 —0.5623459( —2)
3 09091099( —2)
—0.5970292( —2)

BB e L LA R e
-

3% 06244320(—2)  08052711(—2)  0.8854966( —2)
5 0 06505892(—2)  07377901(—2)  0.7758616( —2)
S 3 —04417704(—2) —05839509(—2) — 0.6455707( —2)
Y 1 03364298(—2)  04480153(—2) 0496621 3( —2)
Y ¢ —03170737(—2) -—04286688(—2) —04773932( —2)
6 0 —01023121(—2) —02179732(—2) —0.2688276(—2)
6 3 023BU67(—2)  0321217(—2)  0.3615135(—2)
6 6 —02088834(—2) —02850869(—2) —03189039¢—2)
Y3 —0.1458326(—2) —02074241(—2) —02352782(—2)
Y3 01676582(—2)  02366863(—2)  0.2676994( —2)
7 0 0.154 9584 5( —2) 0178317 1( —=2) 0.189 563 6( — 2)
7 3 —01116908(—2) —0.1588632(—2) —0.1802957(—2)
7 6 01093073(—2)  0.1552887(—2)  0.176551 1( —2)
b 062655290 —3)  0.8564559( —3)  0.964 150 3( — 3)
A —0.8312947(—-3) —0.1209081( —2) —0.1379627(—2)

0110944 5( 4+ 0)
—0.541 12660 —1)
—0.3684052( - 1)

0.291 108 3( — 1)
—0.2483120( - 1)

0181701 1( — 1)
—0.1028715(—-1)

0.1252876( — 1)
— (0.B58 1355( - 2)

0.112 345 6( -+ 0)
— 057074901 — 1)
— 0384360 1(— 1)

0.298 8153( — 1)
—0:2610100( — 1)

0.1930809( — 1)
—0.1155218(—1)

0.134 858 7( — 1)
~09310130( —2)

0960 0527( — 2)

0.8115642( —2)
— 0.701 668 6( — 2)

0.541 1054( — 2)
—0.521 721 6( = 2)
—~0.3150775( - 2)

0.397 692 8( — 2)
—0.3497374( — 2)
—0.2608930( — 2)

0296 116 7( - 2)

0.199 909 0( — 2)
-0,1998739( — 2)

0.196 1174( —2)

0.106 1820( — 2)
—01537185( —2)

0.113 402 B( + 0)
—0.614 508 1( — 1)
— 0,408 734 0( — 1)

0.310026 1( — 1)
—0.2798619( — 1)

0.211217 6( — 1)
—0.1367748( — 1)

0.1513137( — 1)
—0.1059850( — 1)

0.109 368 3( — 1)

0.876 858 7( — 2)
—~0.800 227 8( —2)

0.618 446 8( — 2)
— 0.598 690 8( — 2)
—0.3949112( —2)

0.462 160 6( — 2)
— 0.402 886 6( — 2)
— 0.306 704 7( — 2)

0.347 270 4( — 2)

0.218 354 8( — 2)
~02342507( —2)

0.230 664 9( —2)

0:122 197 0¢ — 2)
—0.181 488 4( — 2)

0112459 2( +0)
—0.6430536(— 1)
— 0426472 5(—1)

03171577( = 1)
— 0292 847 8( — 1)

0.2238269( — 1)
—0.1529526(—1)

0.1638934( —1)
—0.1167639( —1)

0.1205097( — 1)

0.9355361( —2)
— (B84 2852( — 2)

0.682 815 8( — 2)
—0.6633387( —2)
—0.460 161 9( = 2)

0.516 708 3( —2)
—0.4467323( - 2)
—0.346 554 3( — 2)

0.391 326 8( —2)

0.2357932( — 2)
—0.2640284( — 2)

0.2610297( — 2)

0.135 827 3( — 2)
— 0.205047 61 — 2)
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FI1G. 1. Surface of total energy forp = 2.5 a,,.
The minimum occurs for ¢ = 60°, & = 90% an
equidistant linear structure close to the abso-
/ lute minimum.

THETA

with interatomic distances of 2.5 a, ( = p). In order to locate
more precisely the absolute minimum, we performed a num-
ber of additional CI calculations, and found this minimum to
be of energy — 1.114 66 hartree and to occur for a linear
geometry with interatomic distances |x, — x,| = [X, — X3
= 2.45 a,,. The binding energy with respect to H," and H is
12.84 mhartree. Schaad and Hicks’ found 2.457 @, and 12.16
mhartree for these values. The most accurate numbers are
those of Ahlrichs eral.":2.457 a,and 14.43 mhartree, respec-
tively.

Quite noticeable in Fig. 1 is the peak at (90°,0%), where
atoms 2 and 3 coincide and atom 1 is at a distance y3p from
the coinciding pair. The presence of this Coulomb singular-
ity in the 6—¢ plane is the reason that we fitted the electronic
energy and added the nuclear repulsion afterwards.

Another feature to be observed is the saddle point at
(44.4°,0°). This point corresponds to a T-shaped van der
Waals type complex consisting of a slightly compressed H'
unit (bond distance 1.94 @,,) and the H-atom 1 at a distance
of 3.99 g, from this molecular ion. Recalling from Sec. 11
that the plane ¢ = 0 is a symmetry plane corresponding to
the transposition (2,3), we see that the point (90°, — 60%)
belongs to the linear molecule 2-3—1. Hence the saddle point
is the “transition state” of the “reaction™ 1-2-3 —2-3-1.
For this reason we pinpointed the saddle point somewhat
more accurately by performing some extra CI calculations
and found a barrier energy of 11.78 mhartree ( = 2585
cm ') belonging to a T-shaped complex consisting of equi-
librium H," and atom 1 at a distance 4.5 a,,. Obviously the
binding in this complex is mainly due to monopole/induced-
dipole interaction. The depth of the van der Waals well is
1.06 mhartree. The height of the barrier being of the same
order of magnitude as the first vibrational transition*' in H,'
(2297 cm ") we find a large likelihood of tunneling between
the symmetry-related minima. Ahlrichs er al.® found 1233
cm ! for the largest harmonic vibrational frequency of trip-
let Hy" .

= S T T T T
80.0 ®80.0 70.0 B80.0 50.0 40.0 30.a 20.0

A final remark to be made about Fig. 1 is that we see a
valley, extending from the minimum to the saddle point, that
runs more or less along a circle with an origin at (90°,0%).
This is seen more clearly in Fig. 2, which is a contour version
of Fig. 1. The same sort of circular valleys, but with decreas-
ing radii, are observed in the contour plots of Figs. 4-7. Fig-
ure 3 gives the surface at p = 2.0 4,

In order to explain the occurrence of these valleys we
recall that the (normalized) Jacobi coordinates are desig-
nated by y, (a vector pointing from the midpoint of the atom
pair 2-3 to 1) and y,, which is a vector pointing from atom 3
to 2. Except for the normalization, the vectors y, and y, are
the atom—diatom coordinates usually designated by Rand r,
respectively, Let & be the angle between these vectors, then
from Eqgs. (12) and (13) we find

dsin & =cosf, (51)
and from Eq. (19b),
dcosé = —singsinf, (52)
with
=20 _1cdql. (53)
r

For fixed d Eqs. (51) and (52) define a curve [0(£),6() ]
in the f—¢ plane. The endpoints of the curve are

[6(m).d(m)] = [imaresin(d) | (54)
and

[9(%7?),(&({#)] = [{ﬁ—arcsin(d).()] , (55)

Hence, the curve [A(£),¢(£) ] intercepts the ¢ = 0° axis at
the same value as the # = 90° axis, from which it can be
surmised that the curve is more or less circular. It can be
shown that the smaller the radius arcsin(d) the more circu-
lar the curve is, whereas for larger d it bulges somewhat
around £ =135,

In the neighborhood of y,=iy2|x, — x;| = W2 2.0 a,
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F FIG. 2. A contour plot of

Fig. 1, ie., the surface at

= =Sctmxe p=235a,
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the PES will show a valley due to the chemical bonding in
H," . Since in the contour plots of Figs. 2-7 the hyperradius »
is kept constant, this means that we may expect a dip in the
energy along an approximately circular path of radius

M) (56)

arcsin(d) = arcsin(z.() v
i

corresponding to a varying atom-diatom angle 7> £ > {7 and
a constant H," equilibrium bond distance. This is indeed
observed in the plots.

Outside this circular region, where the H," bond is
broken, we have a system of two separate atoms and a pro-
ton, bound by induction and dispersion forces. For the larger
p values the greater part of the contour plots describe the
dissociated system, whereas for the smaller p values a good
part of the plots pertain the bonding in H, . Since @ and ¢

depend on the inverse of the hyperspherical radius r=.2p,
as follows from Eq. (27), the width of the valley decreases
with increasing r. So, for large » we find a narrow circular
gorge of a small radius arcsin(d), Eq. (56), surrounding an
infinite peak due to nuclear repulsion. Outside this gorge

]
2 / /// /
. /’/ //// ImEaEep
/- / / & | 8§83
8 NEZS N il i O ol
= N T
__——/‘/% P \
sﬁ"’??/
E _____/
n.;_ _y.000— | N
3 =9
80.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0
THETA

FIG. 3. Contour plot of the total energy for p = 2.0 a,. The minimum for & = 90° and & = 60° corresponds to a collinear structure.
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FIG. 4. Contour plot of the total energy for p = 2.75 a;,. The minimum for # = 90" and & = 60" corresponds 1o a collinear structure. A secondary minimum

appears for a linear van der Waals complex H," -H.

variations in energy are due to van der Waals forces which
are several orders of magnitude smaller than the binding
energy of H,", and so this part of the surface is flat.

The quadrature points, sampling the surface, have been
chosen independent of r, and so the gorge can be missed
easily for the larger hyperradii. Indeed, initially we tried to
fit also an asymptotic surface for p = 10.0 a,, but this turned
to be impossible. However, for the smaller hyperradii, too,

the quality of the fit is somewhat disappointing, as may be
judged from the values in Table II. (We are able to present
this table because our first attempts to describe the PES were
based on 5 % 5 grids, and an expansion in spherical harmon-
ics. The corresponding quadrature points being different
from the ones used in the present fits, the earlier results are
useful as a check on the accuracy of the fit.) Table II con-
firms that the quality of the fit deteriorates with increasing r.

PHI

[l [ g
o o (=} Q
S 5 ] 3 o
S I - - —_
N ] I I
. [
f { |
|
-
80.0 80.0 50.0 40.0 30.0 20.0 10.0 0.0

FIG. 5. Contour plot of the total energy for p = 3.0 a,,. The minimum for 8= 90° corresponds to a linear van der Waals complex H, -H.
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VIi. SUMMARY AND CONCLUSIONS

We have seen that the Smith—Whitten hyperspherical
coordinates form a coordinate system for R® that has well-
defined properties under permutations of the particles.
Hence it is possible to define totally symmetric functions of
these coordinates. Such functions can be used to describe the
potential energy surfaces of systems of three identical parti-
cles. Furthermore, the Smith—~Whitten coordinates have the
advantage that they divide into two groups: three external

~—t++ FIG. 6. Contour plot of the

total energy for p= 3.5 a,
The minimum for €= 9%0°
corresponds to a linear van
der Waals complex H,” -H.

I

s

70.0 60.0 0.0

THETA

coordinates that give the orientation of the system in space
and three internal coordinates r, &, and ¢ that define the
geometry of the system.

In order to obtain the potential energy surface of H," in
its lowest triplet state the set of D matrices D[
(0,26,2¢) was introduced, and the PES is expanded in terms
of these functions.

From this work it becomes apparent that the use of hy-
perspherical coordinates is not without problems. Especially
for larger values of the hyperradius r, the fit of the surface is

[
]

— 1020

40.0

10.0 0.0

FIG. 7. Contour plot of the total energy for p = 4.0 @,,. The van der Waals complex H," —H. with H circling the molecule-ion, is the circular valley between

the - 1.100 hartree lines.
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TABLE I1 Quality of the fits obtained from 85 grids in comparison with
values computed in 5 5 grids. Root mean square and maximum deviation
in mhartree, p=r/v2 a,,

p=20 p=25 p=275 p=30 p=35 p=40
rms 0.08 0.10 0.12 0.13 0.16 0.18
AE 1.16 1.82 210 236 2.86 3.27

A

not as good as may be hoped for. The main reason for this is
that the effects due to the chemical bonding in H,™ give rise
to a narrow gorge in the surface that is otherwise very flat.
The description of such a narrow gorge requires long expan-
sions and many CI calculations. Even if one is prepared to
compute these long expansions, it remains to be seen how
useful they will be in variational dynamics calculations,
since they will require likewise long expansions for the wave
function of the nuclei.

Although the present surface does not have spectro-
scopic accuracy, it is better than many of the existing model
three-body potentials. Until better potential energy surfaces
become available, it can be of use in semiquantitative nuclear
motion calculations.

Finally, it must be remarked that hyperspherical coordi-
nates are nonorthogonal. Since this nonorthogonality gives
rise 1o many cross derivatives in the kinetic energy operator,
adynamics calculation in terms of these coordinates will be a
major undertaking, even if high accuracy surfaces become
available.
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APPENDIX

We shall show that the hyperspherical angles y, 8, and ¢
are, in fact, the Euler angles of the special unitary group
SU(2). Consider to that end Eq. (22) of the main text. The
nonzero 2 % 2 block appearing in that equation satisfies the
relation

2,4 Z|2)=_L_ cos }OR [1 (¥ +¢)
§ g LR el

3 232

+sin OR[L{y —¢)]S(0)}. (AD)

Perform the following rotation on the column vector
(2ipZ21Z10822)

1 0 0 I\ 2
a, | 1 {0 -1 =1 011 2>,
1 0 0 —1)Yz:
0 1 =1 0/ \z.,

cos 10 cos L(y + &)
—sin i@sin {(y — &)
sin 10 cos L(y — &)
cos {0 sin i(y + @)

(A2)

For a hyperradius r = 1 the parameters {a, } are the Euler—
Rodrigues parameters®” of SU(2). By the use of Eq. (2.21)
of Ref. 32 they are related to the usual Euler angles. In this
case this relationship becomes

(a,. — iy

— iy — ia.)
a, —ia, ay+ i,

e Hyr2) O
=E it¥/2)
0 e

« (cos 1 —sin 59) (e =W 0 ) i
sin {6 cos 16 0 G

This equation shows that, for hyperradius r =1, 3, 6, and &
are the parameters of SU(2).

It is known that SU(2) as a differentiable manifold is
homeomorphic to the sphere S in four space. Much confu-
sion has existed about the domain of its parameters. This
confusion has been cleared up by Jonker and De Vries,** who
showed that for

O0<d<2m (A4)

the sphere is covered exactly once. In the present case the
range of 6 is 0< @<, so that only the upper hemisphere of
5 is covered.

In his original paper'® Smith considered a 2D model,
i.e., he constrained the motion of the particles to a plane.
After we separate off the center of mass, R* becomes the
configuration space of the 2D model. Clearly, the SU(2)
Euler angles and the hyperradius » form a coordinate system
for this space. By the Peter—Weyl theorem the Wigner-ma-
trix elements D 2. (y,0,6) form a complete set on §°, and
restricting these functions to a subset that is independent of
7, we find the spherical harmonics. Hence, in the 2D model it
is reasonable and consistent to expand the PES in terms of
spherical harmonics. Initially we pursued that line of ap-
proach, but found that spherical harmonics do not represent
the surface as well as the D functions used in the main text.
For instance, for p =4.0 4, we find a rms error of 0.608
mhartree and a maximum deviation from the 25 reference
points of 14.16 mhartree. As can be seen in Table 11, the
corresponding numbers for the D functions are considerably
better.
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